
PAPYRUS TOOL SUPPORT FOR FMI

Ericsson Modeling Days 2016
Kista, Sweden, September 13-14, 2016

Sahar GUERMAZI, Sébastien REVOL, Arnaud CUCCURU, Saadia
DHOUIB, Jérémie TATIBOUET, Sébastien GERARD

CEA LIST / DILS / LISE

•  FMI (Functional Mockup Interface)
•  Emerging standard for co-simulation

•  Enables multiple compliant modeling and simulation tools to interoperate

•  Particularly interesting for designing CPS (Cyber Physical Systems)

•  Heterogeneous systems

•  => many different skills and paradigms, each one being addressed using specific modeling and simulation tools.

•  UML in the FMI eco-system
•  UML (and its variants) can be used to design parts of CPS (E.g., the high-level control logic of an embedded software)

•  Would be nice to have the possibility to assess the relevance of the UML-based parts with respect to
their (simulated) environment

•  Early consideration of environmental aspects in the design

•  => Early detection of possible flaws in the design

•  => Save time, save money, and make more robust designs.

•  Encompasses two complementary aspects:

•  1. the ability to import / assemble FMUs, and co-simulate them (master tool)

•  2. the ability to export FMUs from executable UML models.

•  Papyrus now provides FMI tool support
•  Based on Moka, the Papyrus module for model execution
•  Encompasses both a master and an export functionality

FMI FOR PAPYRUS / PAPYRUS FOR FMI

•  Reminder on OMG standards for Executable Modeling

•  Overview of Moka, the Papyrus module for model execution

•  Papyrus tool support for FMI
•  Video demo

•  Perspectives

OUTLINE

PART I

–

REMINDER ON OMG STANDARDS FOR
EXECUTABLE UML MODELING

EXECUTABLE UML OMG SPECIFICATIONS

UML

fUML
Execution

Model

Syntax Semantics

Semantic
mapping

fUML

Alf (Action Language for fUML):
- Textual surface notation for the fUML subset

PSSM

PSCS

PSSM
Execution

Model
PSCS

Execution
Model

Structure

Behavior

1. Class diagram (~ BDD)

2. Composite structure diagram (~ IBD)

3. Activity diagrams

Instantiation of
an active class
implies starting
of its behavior

Instantiation of a
composite structure

implies instantiation of
its constituents

AcceptEventActions
enable to specify

reactive behaviors

SendSignalAction enable to
specify asynchronous

communications, which will flow
through ports and connectors

Event dispatching occurs at Run
To Completion (RTC) steps

KEY SEMANTIC ASPECTS

PART II

–

OVERVIEW OF MOKA, THE PAPYRUS
MODULE FOR MODEL EXECUTION

•  Papyrus module for model execution

•  Help designers to understand/orient their design choices

•  Basis for a straightforward, simulation-driven design process:

•  (Model / Execute / Observe / Refine)+

•  Front-end for integration of simulation tools and techniques

•  Model Debugging capabilities

•  Control (start/stop, suspend/resume, breakpoints)

•  Observation (diagram animation, variables, threads)

•  Complies with standard OMG semantics of UML

•  Implements the fUML and PSCS execution models (PSSM coming)

•  (Tool support for Alf, the standard textual notation of fUML)

•  Flexible/extendible

•  New execution engines can be plugged (to support multiple semantics and UML profiles)

•  Extension points to inject control/execution model libraries (to trigger the execution of external functions and

procedures directly from a UML model)

MOKA: OVERVIEW

•  Controlling and Observing executions

CONNECTION WITH THE ECLIPSE DEBUG FRAMEWORK

•  Multiple execution engines can be registered

CONNECTION WITH THE ECLIPSE DEBUG FRAMEWORK

•  Papyrus plug-in for model execution

•  Help designers to understand/orient their design choices

•  Basis for a straightforward, simulation-driven design process:

•  (Model / Execute / Observe / Refine)+

•  Front-end for integration of simulation tools and techniques

•  Model Debugging capabilities

•  Control (start/stop, suspend/resume, breakpoints)

•  Observation (diagram animation, variables, threads)

•  Complies with standard OMG semantics of UML

•  Implements the fUML and PSCS execution models (PSSM coming)

•  (Tool support for Alf, the standard textual notation of fUML)

•  Flexible/extendible

•  New execution engines can be plugged (to support multiple semantics and UML profiles)

•  Extension points to inject control/execution model libraries (to trigger the execution of external functions and

procedures directly from a UML model)

•  NEW : Support for FMI Co-Simulation standard
•  Export of FMUs from executable UML models

•  Ability to import and assemble FMUs, co-simulate them with the built-in Moka master, and visualize

simulation traces on XY charts.

MOKA: OVERVIEW

PART III

–

PAPYRUS TOOL SUPPORT FOR FMI

Allows to export each executable model as a standalone unit (FMU)
•  An FMU as to provide a standard binary interface as shared library (dll/.so)

•  Set Inputs

•  Get outputs

•  Do Step (stepSize)

The simulation Master synchronizes and orchestrates the FMUs

FUNCTIONAL MOCK-UP INTERFACE (FMI)

Co-simula*on	Environment

Master	Algorithm

Model
Solver FMU Model

Solver FMU

tc1

tcn=tstop

tc0=tstart tc2 tci tci+1

Communication
points

hc1 hci

- get outputs Y(tci)
-  set inputs U(tci)

-  doStep hci (tci -> tci+1)
-  advance time to tci+1

Step sizes

OVERVIEW OF PAPYRUS TOOL SUPPORT FOR FMI

Moka

Moka	FMU:	
Moka	RCP	

(minimal	Moka	+	
execu:on	

engine)	+	UML	
model	

import

export

FMU	(model	+	
solver)	exported	

from	

Composite	
structures	
assembly	

Master	algorithm	

Simula:on	
outputs.	Can	be	
opened	in	new	
XY	diagram	kind	
provided	by	
Papyrus	

…

THE FMU EXPORT FUNCTIONNALITY

•  Architecture of exported FMUs

•  Models are made following some guidelines:

•  Based on a minimal UML profile for FMI

•  FMUs modeled with active classes, and corresponding classifier behavior as an activity

•  Timing aspects handled with « TimeEvents » (requires some extensions to fUML)

•  Reactive aspects (i.e., changes on inputs of the FMU) handled with « ChangeEvents » (extensions to fUML)

MODELING AND SIMULATION OF REACTIVE ASPECTS

THE FMU EXPORT FUNCTIONNALITY

ReadStructuralFeature
ValueAction on x

CallOperationAction on
compare

AddStructuralFeature
ValueAction on y

Accept Change
Event on x

THE FMI MASTER FUNCTIONNALITY

•  Key features:

•  Ability to import FMUs from FMI 2.0 compliant tools

•  Definition of the co-simulation graphs (i.e., assembly of FMUs + configuration of simulation runs)

•  Master algorithm specified by an executable UML models, along with a dedicated model library
•  Fixed step size, no usage of rollbacks, but we have some plans to go further…

•  Visualization of co-simulation results with XY charts

DEMO

PART IV

–

PERSPECTIVES

-  FMU modeling and export:

-  Support of rollback

-  Support of state machines

-  Master tool:

-  Native cosimulation of fUML and FMI

-  Architecture to ease the integration of new master algorithms (might be based on models on

those masters, but raises performance issues)

-  Tooling:

-  Papyrus customization for modeling of FMUs and configuration of simulation runs

-  Consolidate integration of the XY visualisation tool

-  Debug capabilities at the master level (similar to those available on unitary FMUs. Cf.
video demo)

PERSPECTIVES (SHORT / MID TERM)

-  Focus so far: Simulation engineering, with technological bricks getting maturity on:

-  Execution and debugging of UML models (and their variants)

-  Ergonomy of the modeling environement

-  Support for cosimulation aspects

-  Visualisation capabilities

-  Next steps: Leverage the simulation engineering capabilities in a more global
Model-Based System Engineering approach, relying on other technological
bricks of the Papyrus ecosystem:

-  Requirement engineering (Links between simulation models and requirement coverage / satisfaction)

-  Testing engineering (Links between simulation models/runs and test case generation/verdict computation

provided by model-based testing techniques)

-  Software engineering (Refinement of executable models into deployable software artifacts)

-  Etc.

PERSPECTIVES (LONGER TERM)

GETTING STARTED WITH MOKA:
HTTPS://WIKI.ECLIPSE.ORG/PAPYRUS/

USERGUIDE/MODELEXECUTION

VIDEO TUTORIAL AVAILABLE SOON

Acknowledgments to
the LISE team for
their direct and
indirect contributions
to this presentation.

BACKUP

CONNECTION WITH THE ECLIPSE DEBUG FRAMEWORK

•  Managing launch configurations

•  Managing breakpoints

CONNECTION WITH THE ECLIPSE DEBUG FRAMEWORK

MODELING AND SIMULATION OF TIMING ASPECTS

THE FMU EXPORT FUNCTIONNALITY

