DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

PAPYRUS TOOL SUPPORT FOR FMI

Ericsson Modeling Days 2016 Kista, Sweden, September 13-14, 2016

Sahar GUERMAZI, <u>Sébastien REVOL</u>, Arnaud CUCCURU, Saadia DHOUIB, Jérémie TATIBOUET, Sébastien GERARD

CEA LIST / DILS / LISE

FMI FOR PAPYRUS / PAPYRUS FOR FMI

FMI (Functional Mockup Interface)

- Emerging standard for co-simulation
- Enables multiple compliant modeling and simulation tools to interoperate
- Particularly interesting for designing CPS (Cyber Physical Systems)
 - . Heterogeneous systems
 - => many different skills and paradigms, each one being addressed using specific modeling and simulation tools.

UML in the FMI eco-system

- UML (and its variants) can be used to design parts of CPS (E.g., the high-level control logic of an embedded software)
- Would be nice to have the possibility to assess the relevance of the UML-based parts with respect to their (simulated) environment
 - Early consideration of environmental aspects in the design
 - => Early detection of possible flaws in the design
 - . => Save time, save money, and make more robust designs.
- Encompasses two complementary aspects:
 - 1. the ability to import / assemble FMUs, and co-simulate them (master tool)
 - 2. the ability to export FMUs from executable UML models.

Papyrus now provides FMI tool support

- Based on Moka, the Papyrus module for model execution
- Encompasses both a master and an export functionality

- Reminder on OMG standards for Executable Modeling
- Overview of Moka, the Papyrus module for model execution
- Papyrus tool support for FMI
 - · Video demo
- Perspectives

PART I

_

REMINDER ON OMG STANDARDS FOR EXECUTABLE UML MODELING

EXECUTABLE UML OMG SPECIFICATIONS

Alf (Action Language for fUML):

- Textual surface notation for the fUML subset

KEY SEMANTIC ASPECTS

PART II

OVERVIEW OF MOKA, THE PAPYRUS MODULE FOR MODEL EXECUTION

MOKA: OVERVIEW

Papyrus module for model execution

- Help designers to understand/orient their design choices
- Basis for a straightforward, simulation-driven design process:
 - . (Model / Execute / Observe / Refine)+
- Front-end for integration of simulation tools and techniques

Model Debugging capabilities

- Control (start/stop, suspend/resume, breakpoints)
- Observation (diagram animation, variables, threads)

Complies with standard OMG semantics of UML

- Implements the fUML and PSCS execution models (PSSM coming)
- (Tool support for Alf, the standard textual notation of fUML)

Flexible/extendible

- New execution engines can be plugged (to support multiple semantics and UML profiles)
- Extension points to inject control/execution model libraries (to trigger the execution of external functions and procedures directly from a UML model)

CONNECTION WITH THE ECLIPSE DEBUG FRAMEWORK

Controlling and Observing executions

CONNECTION WITH THE ECLIPSE DEBUG FRAMEWORK

Multiple execution engines can be registered

MOKA: OVERVIEW

- Papyrus plug-in for model execution
 - Help designers to understand/orient their design choices
 - Basis for a straightforward, simulation-driven design process:
 - . (Model / Execute / Observe / Refine)+
 - Front-end for integration of simulation tools and techniques
- Model Debugging capabilities
 - Control (start/stop, suspend/resume, breakpoints)
 - Observation (diagram animation, variables, threads)
- Complies with standard OMG semantics of UML
 - Implements the fUML and PSCS execution models (PSSM coming)
 - (Tool support for Alf, the standard textual notation of fUML)
- Flexible/extendible
 - New execution engines can be plugged (to support multiple semantics and UML profiles)
 - Extension points to inject control/execution model libraries (to trigger the execution of external functions and procedures directly from a UML model)
- NEW: Support for FMI Co-Simulation standard
 - Export of FMUs from executable UML models
 - Ability to import and assemble FMUs, co-simulate them with the built-in Moka master, and visualize simulation traces on XY charts.

M**o**ka

PART III

PAPYRUS TOOL SUPPORT FOR FMI

FUNCTIONAL MOCK-UP INTERFACE (FMI)

Allows to export each executable model as a standalone unit (FMU)

- An FMU as to provide a standard binary interface as shared library (dll/.so)
 - Set Inputs
 - · Get outputs
 - Do Step (stepSize)

The simulation Master synchronizes and orchestrates the FMUs

OVERVIEW OF PAPYRUS TOOL SUPPORT FOR FMI

THE FMU EXPORT FUNCTIONNALITY

Architecture of exported FMUs

Models are made following some guidelines:

- Based on a minimal UML profile for FMI
- FMUs modeled with active classes, and corresponding classifier behavior as an activity
- Timing aspects handled with « TimeEvents » (requires some extensions to fUML)
- Reactive aspects (i.e., changes on inputs of the FMU) handled with « ChangeEvents » (extensions to fUML)

THE FMU EXPORT FUNCTIONNALITY

MODELING AND SIMULATION OF REACTIVE ASPECTS

Key features:

- Ability to import FMUs from FMI 2.0 compliant tools
- Definition of the co-simulation graphs (i.e., assembly of FMUs + configuration of simulation runs)
- Master algorithm specified by an executable UML models, along with a dedicated model library
 - Fixed step size, no usage of rollbacks, but we have some plans to go further...
- Visualization of co-simulation results with XY charts

PART IV

PERSPECTIVES

PERSPECTIVES (SHORT / MID TERM)

- FMU modeling and export:

- Support of rollback
- Support of state machines

Master tool:

- Native cosimulation of fUML and FMI
- Architecture to ease the integration of new master algorithms (might be based on models on those masters, but raises performance issues)

- Tooling:

- Papyrus customization for modeling of FMUs and configuration of simulation runs
- Consolidate integration of the XY visualisation tool
- Debug capabilities at the master level (similar to those available on unitary FMUs. Cf. video demo)

PERSPECTIVES (LONGER TERM)

- Focus so far: Simulation engineering, with technological bricks getting maturity on:
 - Execution and debugging of UML models (and their variants)
 - Ergonomy of the modeling environement
 - Support for cosimulation aspects
 - Visualisation capabilities
- Next steps: Leverage the simulation engineering capabilities in a more global Model-Based System Engineering approach, relying on other technological bricks of the Papyrus ecosystem:
 - Requirement engineering (Links between simulation models and requirement coverage / satisfaction)
 - **Testing engineering** (Links between simulation models/runs and test case generation/verdict computation provided by model-based testing techniques)
 - Software engineering (Refinement of executable models into deployable software artifacts)
 - Etc.

THANK

Acknowledgments to the LISE team for their direct and indirect contributions to this presentation.

GETTING STARTED WITH MOKA:

HTTPS://WIKI.ECLIPSE.ORG/PAPYRUS/
USERGUIDE/MODELEXECUTION

VIDEO TUTORIAL AVAILABLE SOON

CONNECTION WITH THE ECLIPSE DEBUG FRAMEWORK

Managing launch configurations

CONNECTION WITH THE ECLIPSE DEBUG FRAMEWORK

Managing breakpoints

MODELING AND SIMULATION OF TIMING ASPECTS

Values observed by the master

«CS_FMU» ⊟C1