P

Extensible Parsers - C99/UPC Parsers

Mike Kucera
Jason Montojo
IBM Eclipse CDT Team

© 2006 IBM; made available under the EPL v1.0 | August 8, 2006 —

E@ DSE

Overview

= (Goals

> To create a parser framework that allows language extensions to
be easily added to CDT

» Modularity
» Clean implementation, maintainability
» Performance

= Support for Unified Parallel C (UPC) needed by the Parallel
Tools Project

» UPC spec is an extension to the C99 spec

2 © 2007 IBM Corporation; made available under the EPL v1.0 —

P

C99 Parser in CDT 4.0

= C99 parser base
» Designed to be extensible

= UPC parser
» Built on top of C99 parser

3 © 2007 IBM Corporation; made available under the EPL v1.0 —

E@ DSE

Language Extensibility in CDT

= What CDT currently provides
» Extension point for adding new parsers

» Map languages to content types
» Syntax highlighting can be extended to new keywords
» Add new types of AST nodes

= What CDT does not provide
» A parser that can be directly extended to support new syntax

> A reusable preprocessor

4 © 2007 IBM Corporation; made available under the EPL v1.0 —

C99 Preprocessor

= New preprocessor written from scratch

= Much cleaner implementation than DOM preprocessor
» DOM preprocessor:
« Lexing and preprocessing are combined, not modular
* Processes raw character stream, very complex code to do this
« Doesn’t handle comments properly
» C99 Preprocessor:

« Lexing and preprocessing are separated, modular

« Token based, input is first lexed into tokens then fed to
preprocessor, much cleaner

- Comments are correctly resolved by the lexer

5 © 2007 IBM Corporation; made available under the EPL v1.0 —

5@95 C

C99 Parser in CDT 4.0

= Different approach than the DOM parser
» DOM parser completely hand written

= C99 Parser generated from grammar files using a parser generator
» Using LPG - LALR Parser Generator

» Bottom-up parsing approach
» Grammar file looks similar to the spec

= Some parts of DOM parser are reused

» AST
» LocationMap

6 © 2007 IBM Corporation; made available under the EPL v1.0 —

5@95 =

LPG — LALR Parser Generator

= Two parts

» The generator (Ipg.exe)

« Generates parse tables from grammar file

« Parse tables are basically a specification of a finite state
machine

» The runtime (java library)

« Contains the parser driver and supporting classes
« Parser driver interprets the parse tables

7 © 2007 IBM Corporation; made available under the EPL v1.0 —

E@ DSE

LPG — LALR Parser Generator

= LPG is used by several eclipse projects including:
» Model Development Tools (MDT)

» Graphical Modeling Framework (GMF)

» Generative Modeling Technologies (GMT)

» Data Tools Platform (DTP)

> SAFARI

» Java Development Tools (JDT, in the bytecode compiler)

= Part of Orbit project

8 © 2007 IBM Corporation; made available under the EPL v1.0 —

E@Efg S

LPG — Benefits

= Automatic
» Computation of AST node offsets

» Backtracking
» Syntax error recovery

= Clean separation of parser and the code that builds the AST

= Grammar file inheritance
» Source of parser extensibility

9 © 2007 IBM Corporation; made available under the EPL v1.0 —

-

C99 Grammar File Example

10

statement

labeled_statement
compound_statement
expression_statement
selection_statement
iteration_statement
jump_statement
ERROR_TOKEN

/.$ba consumeStatementProblem(); $ea./

iteration statement

'do' statement 'while' ' (' expression ')' ';
/.$ba consumeStatementDoLoop(); S$Sea./
'while' '(' expression ')' statement

/.$ba consumeStatementWhileLoop();

'for' ' (' expression ';' expression ';

/.$ba consumeStatementForLoop (true,

Sea./

expression
true);

true,

© 2007 IBM Corporation; made available under the EPL v1.0

')' statement

Sea./

E@Q% =

AST Building Actions

/**

* jteration_statement ::= 'while' ' (' expression ')' statement
*/

public void consumeStatementWhileLoop () ({

IASTWhileStatement whileStatement = nodeFactory.newWhileStatement () ;

IASTStatement body (IASTStatement) astStack.pop();
IASTExpression condition = (IASTExpression) astStack.pop();

whileStatement. setBody (body) ;
body.setParent (whileStatement) ;
body.setPropertyInParent (IASTWhileStatement . BODY) ;

whileStatement.setCondition (condition);

condition.setParent (whileStatement);

condition.setPropertyInParent (IASTWhileStatement . CONDITIONEXPRESSION) ;
setOffsetAndLength (whileStatement);

astStack.push (whileStatement) ;

11 © 2007 IBM Corporation; made available under the EPL v1.0

E@Q% =

Content Assist

= 5 simple grammar rules

ident ::= 'identifier' | 'Completion'

"1 =? 'RightBracket' | 'EndOfCompletion'
") =? 'RightParen' | '"EndOfCompletion'
"} =? 'RightBrace' | '"EndOfCompletion'
';'" ::=? 'SemiColon' | 'EndOfCompletion'

= First rule says that a Completion token can occur anywhere an
identifier token can occur.

= Next 4 rules allow the parse to complete successfully after a
Completion token has been encountered.

12 © 2007 IBM Corporation; made available under the EPL v1.0 —

P

Generating The Parser From Grammar Files

Grammar e
e Tables
Recognizes
C99Lexer. g S coonz
Generator
lpg.exe
Grammar /
File Parse
Tables
C99Parser.g Reic;gnr;ﬁzz 599

13 © 2007 IBM Corporation; made available under the EPL v1.0 —

P

Architecture of C99 Parser

o Token
Source |—* Preprocessor —oueam Parser
Code
C99 C99 G99 AST
C99 AST
Lexer Parse Keyword _
Tables Map Actions

14 © 2007 IBM Corporation; made available under the EPL v1.0 —

E@ DSE

Extensibility — Supporting UPC

= UPC grammar file extends the C99 grammar file
» Adds new grammar rules for UPC syntax

» Generates new parse tables that recognize UPC

$Import
C99%Parser.g
SEnd

iteration_statement
::= 'upc_forall' '(' expression ';' expression ';' expression ';'
affinity ')' statement
/.$ba consumeStatementUPCForallloop (true, true, true, true); $ea./

15 © 2007 IBM Corporation; made available under the EPL v1.0 —

e CliDEE

Extensibility — Supporting UPC

= Extend C99 classes.

C99ParserAction C99KeywordMap

/\ /\

UPCParserAction UPCKeywordMap
Adds actions for new Adds mappings for new
grammar rules UPC keywords like

‘upc_forall’

16 © 2007 IBM Corporation; made available under the EPL v1.0 —

Extensibility — Supporting UPC

= Create AST node classes for new language constructs

CASTForStatement

AN

UPCASTForallStatement

17 © 2007 IBM Corporation; made available under the EPL v1.0 —

P

Architecture of UPC Parser

upC Token
Source |—* Preprocessor —oueam Parser
Code
C99 UPC UPC UPC AST

Parse Keyword AST

Lexer)
Actions

Tables Map

18 © 2007 IBM Corporation; made available under the EPL v1.0 —

=—C|lipSE

Performance

100%
90% -
80%
70% -
60%
50% -
40%
30% -
20%
10%

0%

GNUCSourceParser C99Parser

19 © 2007 IBM Corporation; made available under the EPL v1.0 _

E@ DSE

Future Work

Make the preprocessor reusable
» Reusable on any token stream

» Use for FORTRAN etc...

Support for C++
» Advanced approach

= Provide compiler specific extensions
> GCC, XLC etc...

Further performance enhancements
» We haven’t spent much time on optimizations yet

20 © 2007 IBM Corporation; made available under the EPL v1.0 —

