
1

confidentialPublic

openPASS – Content of pull-request for release 0.6
04.07.2019 – Reinhard Biegel

2

confidential

2

Public

Commit overview

• Support of scenario based simulation

• Static instantiation of agents based on systemConfiguration

• Dynamic instantation of agents based on AppConfig (systemConfiguration template), ADAS and sensors are sampled based on probabilistic profiles

• New agent modules for dynamically instantiated agents

• Support of conditional interference during the simulation run via EventDetectors and Manipulators

• New SpawnPoint for scenario based spawning in the World_OSI with randomized spawning of traffic

• Update of World_OSI

• Improvement of OpenPassSlave

• New scheduler

• Various new importers for scenario based simulation

3

confidential

3

Public

SpawnPoint_OSI

• Places agents and static traffic objects in World_OSI

• Initial placement of ego and scenario agents according to Scenario.xml

• Additional agents are spawned to reach a defined TrafficVolume (Common

cars)

• During runtime additional agents are spawned at start of road

4

confidential

4

Public

ObservationLog

• Implementation of ObservationInterface

• Responsible for adding RunStatistic information to simulation output

• Modules can access generic „Log“ method to add their own data to RunStatistics (interim solution until Publish-Subscriber is implemented)

• Logged values are divided into different groups. ExperimentConfig (in CombinationConfig.xml) defines which groups are written to the output

• Output is saved as XML-file

5

confidential

5

Public

EventDetector and Manipulator

• EventDetectors check for conditions defined in Scenario.xosc

• If all specified conditions are met an event is inserted in the

EventNetwork

• Based on the event a corresponding Manipulator is triggered

• Manipulators have different types and can act on different scopes

OSI use-case example:

• EventDetector activates, if SimulationTime > -1 (i.e. in first timestep)

• This triggers the ComponentStateChangeManipulator, which sets the

ComponentState of the DynamicsTrajectoryFollower in the agent with

name „TF“ to Acting.

6

confidentialPublic

Overview of new agent modules

7

confidential

7

Public

Signalflow

8

confidential

8

Public

Driver modules

Sensor_Driver

• Reads all dynamic mesoscopic information and information about own vehicle (e.g. velocity) via the AgentInterface and forwards aggregated data to the other

driver modules as SensorDriverSignal

ParametersVehicle

• Reads all static information about the vehicle (i. e. VehicleModelParameters) via the AgentInterface and forwards aggregated data to the other driver modules

as ParametersVehicleSignal

AgentFollowingDriver

• Implementation of a simple driver. Acts based on data from the signals above. Keeps a constant velocity, or adjusts velocity to the car in front

Algorithm_Longitudinal

• Translates the acceleration wish of the driver or a vehicle component into gear and pedal positions

Algorithm_Lateral

• Translates intended lateral deviation of the driver or a vehicle component into a steeringwheel angle

9

confidential

9

Public

Algorithm_AEB

• This module is an example for an ADAS in openPASS

• It implements a simple autonomous emergency braking (AEB) logic

• If the predicted time to collision (TTC) to another object is below a specified threshold, braking with constant deceleration is triggered

10

confidential

10

Public

Sensor_OSI and SensorFusion_OSI

Sensor_OSI

• The Sensor_OSI module represents different types of sensors based on the OSI-groundtruth

• The output of Sensor_OSI is OSI SensorData

• Geometric2D-sensor is given as an example implementation of an OSI based sensor

• The Geometric2D-sensor acts as a 2D radar, detecting moving and stationary objects inside a circular sector

• Detection considering visual obstruction is supported

SensorFusion_OSI

• The SensorFusion consolidates SensorData of multiple OSI-sensors into a single SensorData structure

• The combined SensorData is forwarded to all ADAS

11

confidential

11

Public

Dynamics_RegularDriving

• The module is responsible for calculating the vehicle dynamics

• Pedal positions, steeringwheel angle and the current gear are translated into new values (velocity, acceleration and position) considering the vehicle‘s

physical parameters

• Calculated data is forwarded as DynamicsSingal

12

confidential

12

Public

Dynamics_Collision

• In case a collision occured, Dynamics_Collision takes over the calculation from Dynamics_RegularDriving

• Collisions are modeled as simple inelastic collisions

• After the collision, Dynamics_Collsion decelerates the agent with a constant value of 10m/s²

• Analogous to the Dynamics_RegularDriving module, calculated values are forwarded as DynamicsSignal

13

confidential

13

Public

Dynamics_TrajectoryFollower

• This module can be used to force an agent to follow a predefined trajectory

• The agents position is set, velocity and acceleration is calculated based on the given trajectory provided by a CSV-file

• Trajectories can either be given in world coordinates or in absolute or relative road coordinates

• Dynamics_TrajectoryFollower can either be dominant (enforcing the trajectory) or submissive (trajectory can be overruled by an ADAS)

14

confidential

14

Public

SignalPrioritizer

• Since a signal of a specific type can be created by different modules simultaniously, it‘s necessary to prioritize one of those signals before allowing

consumption by a follow-up module

• Priority lists are used to decide which signal gets forwarded

• Examples:

• The DynamicSignal can originate from the Dynamics_RegularDriving, the Dynamics_Collision or the Dynamics_TrajectoryFollower. The Dynamics_Collision

has the highest priority and the Dynamics_RegularDriving has the lowest priority

• Different ADAS can output an AccelerationSignal and a SignalPriotizer is used to decide which ADAS gets prioritized

15

confidential

15

Public

AgentUpdater

The AgentUpdater calls setter-functions of the AgentInterface for all values of the DynamicsSignal

16

confidential

16

Public

Sensor_RecordState

The Sensor_RecordState logs all basic agent based informations (e.g. agentID, velocity, position) via the ObservationLog

17

confidential

17

Public

Vehicle Control Unit (VCU)

• The VehicleControlUnit (VCU) is used to configure and handle dependencies between vehicle components

• The responsibilities of the VCU are:

• Handling of all dependencies in case a component wants to activate

• Make information about driver, Dynamics_TrajectoryFollower and other vehicle components available to each other

• Determine the highest allowed activation state of a component and notify the affected component about this state

• To achieve this tasks, each component is assigned a maximum allowed state in each timestep. This state is of type ComponentState, which defines Disabled,

Armed or Active as allowed states.

• Drivers can be in a state of either Active or Passive.

