Alexander Nyl3en
itemis AG

Graphical Editing Framework Project Le

-

Image courtesy of Julie Lafrance / flickr

‘3\;6/ Ze st

‘n—..’_ :

= 43'(s ”‘ e -G
“for grag ,cal edltorsfvrews in Eclipse:

."

b
o o I y .""..o

Ire oject W|’Eh qufte Iong hlstory A {

3 eehﬂﬁlagy with Iot s‘of users (cllrect & indirect

e
,
" - - -

ygh GMF]Grapm‘u) i) oW, ,,’" L

.

_ “&'ﬂ

y: g‘rj e ’ ‘ . \

&w no"‘bseakmg AP changes smce 2004 (GEF 3. 0‘0

i\ll’

Jo &)‘“3‘"‘ ";

r." .

‘] ;"‘.
b ™

n -
Image courtesy of peptic_ulcer/ flickr

GEF celebrated 10th Birthday in 201 2!

Initial contribution by IBM in 2002

Draw2d & GEF (MVC)

* Inrtial contribution of Draw2d & GEF (MVC) by IBM in 2002.

Draw2d - 2D rendering framework; lightwelight {

extension to SW . May be used stand-alone or as ‘

visualization technology for GEF (MVC).

GEF (MVC) - an interactive model-view-controller

pased tree editors and DrawZd-based graphical

editors (and views) for the Eclipse Ul Workbench.)
D —— -

framework, which fosters the implementation of SW I- x

DrawZd & GEF (M\/C)

¥ DR AL Jogs - Lilpar Matfonm

e GE o Gevoss Soyth Bomt Bn Mdoe O
BN B B F S e R S 11 f | B 14 Sy

o R

"0 Fowwe 2 ol =
" "
B LED #0 Vabee w3
WD #]1 Valeew?
B LD #2 Vabue =10
*) Cocun 00
D)
*0nten 0}
M 08 Cate)
P AdCae 2
*O Crcen 02
8 xO% Cate 0%
0 Ard Cate 24
¥ Or Caze 96
» D Cicun 06
Do »9

/est

* Inrtial contribution of Zest by University of Victoria and

IBM Centre for Advanced Studies as part of Mylyn in

2005.
* Joined In on GEF as third component with the 3.4 release
in 2007.
Zest - a visualization toolkit based on SW'T and /

Draw2d to support t

automatic or semi-au

Workbench UI.

L——

ne Implementa

‘lon of views with

tomatic layout

or the Eclipse

\

e et o, e v (RSO, - -

g o Depser e e y Aradysis

= thow Degarercy o™

5 Bvow Lot

O Show M Pate

O Show Dures Fah

T Py Brabies Mges

* Dsooution Envirormmer d
Fow Durkies o om0 mon

V% s b

@mv=0

Opticns

L Show Bundlie Versan Numd

$ow Degenderxy Fath

Show St Fan
Whow Al Patt
Shaow Sronest P

I here I1s quite some decay...

* APl is organically evolved and there are ~400 bugzillas,

- 30 5 e : . .
e “'9’ b ~ . : Image courtesy of Pietro Izzo / flickr

Some lopics for a Renewal

* Support for other rendering platforms than SW'T
(JavakFX)

* Support for the E4 application model

* Support for new input devices (touch gestures)
* Re-thinking current componentization
* Support for rotation and other transformations

* Revision of connection handling (clipping, curved

connections, etc.)

* Various renamings and restructurings on the detall level...

-
Image courtesy of racineur / flickr

Zest 2 (since 2010)

* A provisional Zest 2 component was iftiated in 2010, to
>
develop the next generation Zest API.

* Goal was to develop a new version of Zest in parallel to
the maintenance of Z

* Sources vvereMde

repository, results were published separately via Eclipse

| .x., with a provisional API

o be placed in its own Zest2 Git

Marketplace.

Image courtesy of __sjg__/ flickr

/est 2 - New Features

* Dot 4 Zest
* Cloudio

AN - ZestProjectjtemplates tree.dot - Eclipse SOK - /Users/fsteeq/Documents workspace-helios=i

-~ o &= -

" - DD Qe HG ™ EIDA = F- TR HEs
pecdn I3 S8 K ZewiCrash H e s O
-~ -
digroph the_ ogent likes sarting |
: node ([shape-dox) :

S: NPLTLoDela™NP] V. VP, NP2[1lobela"NP"]; ET. N

L4 v
the, cgent; 1i1kes; mortini
S » NPLL W1 -» BT W] = N DET N ¥ N -
DEY <> thelstyle<doahed); N > opent{atyle-donhed) o\
S 2 YPLYP <0 ¥ W -» W¢ he et laeh L Ul

V <> likes[atyle-dashed); W2 > mortini[atyle-doated)

v
-
L

Writalle irmert

GEF4 (since 201 1)

- GEF4 was initiated - in analogy to Zest 2 - to develop the next

generation Draw2d and GEF (MVC) API.
* Similar to ZestZ, developgient was intende ake place in

parallel to maintenanc€e of Draw2d / GEF (MVC) 3.x

* Inttial plans (priogito 3.8):

we.Create new double-precision Geametry API before Juno
release,

- Start to fﬁigrate the Draw2d and'GEF (MVC) code base on

a step-by-step basis afterwards. -
A\
. . \ . _‘ . ,Im:age courtesy of —Tico— / flickr

2 -

GEF4 + Zest 2 = GER4

GEF4

- A unified provisional approach to develop the next
generation API.

- Development takes place in parallel to maintenance of GEF
proper (Draw2D/GEF 3.x/ Zest |.X)

* Advantages of this procedure:

» Clear distinction between GEF proper as the production and

GEF4 as the provisional component

- Chance to not only refactor GEF components but the

componentization itself, which is only "historically" justified.

Image courtesy of edtechie99 / flickr

Status Quo (a year ago)

* GEF4 Geometry was finalized before Juno

* GEF4 Graphics was initiated before Kepler

* [dea was to provide a common graphics abstraction over
SWT/AWT, and also JavakFX

* GEF4 ,Glyphs® (SwtFX) was planned:

* Figures/Shapes abstractions inspired by Draw2d, SVG, and
JavakFX (SceneGraph)

* Intended as replacement of DrawZd ,Core’

+ Zest2 had been transferred to namespace and repository.

Image courtesy of pareeerica / flickr

GEF4 Geometry

* No distinction in low and high precision, but just a single double-

precision APl (with built-in imprecision for comparisons).

- Different geometric abstractions for different purposes:
* Euclidean (Vector, Straight, Angle)
* Projective (Vector3D, Straight3D)

* Planar (Point, Dimension, Line, QuadraticCurve, CubicCurve,
BezierCurve, Polyline, PolyBezier, Ellipse, Rectangle, Pie, Arc, Polygon,
CurvedPolygon, RoundedRectangle, Ring, Region, Path)

- Conversions to/from AWT and SWT (and between them)

GEF4 Planar Geometry - Overview

<<jgva Cars»»

(2 Une

= duva Oy s <<Myve Qans>>

S Quatr stk Curve () BesserCurwve
sslava Oy ee << lve s> | e

(3 CuticCurve (3 acc
<IVe L
(5 Potyiine
<<Jove Cans»>

GEF4 Geometry - Examples

Status Quo (now)

* GEF4 Geometry further matured

- GEF4 Cloudio extracted from GEF4 Zest code base, stlll
based on SW/JFace (and GEF 3.x Draw2d)

* GEF4 SwtFX under development; initial prototype being
revised

- GEF4 MVC Initiated, based on |avaFX, later also on SwtkFX

Image courtesy of pareeerica / flickr

GEF4 SwtkX - Inrtial Scope

* Replacement of Draw2d 'Core’, making use of JavaFX

key abstractions (Scene, Parent)

* Combination of heavyweight (SVW T Controls) ana

lightweight nodes (Figures) in a single scene graph,
rendered on a SWT Canvas

* SWT Controls wrapped into adapters
* ShapeFigure based on GEF4 Geometry planar shapes

* CanvasFigure provides a lightweight node that allows
painting on a Graphics™®

*) based on former GEF4 Graphics code

GEF4 SwtFX - 5

HBox hbox = new HBox();
VBox coll = new VBox();
VBox col2 = new VBox();
hbox.getChildren().addAl11(coll, col2);
HBox.setHgrow(coll, Priority.ALWAYS);
HBox.setHgrow(col2, Priority.ALWAYS);

coll.getChildren().addAl11(
new Button("abc"),
shape(new Polygon(50, 0, 100, 100, 0, 100), 0, 1, 0),
shape(new Arc(@, @, 50, 50, 15, 120) {{ setType(ArcType.ROUND); 1}}, 0, 1, 1),
new Button("123"));

col2.getChildren().addAl11(
shape(new Ellipse(30, 40, 30, 40), 1, 0, 0),
shape(new Rectangle(@, 0, 100, 50), 0, 0, 1),
new Button("foobar"),
shape(new Rectangle(@, @, 100, 100) {{ setArcHeight(20); setArcWidth(20); }}, 1, 0, 1));

// create scene (and set scene size)
Scene scene = new Scene(Chbox, 400, 300); ‘
stage.setScene(scene);

stage.show();

DR —— - -

GEF4 SwtkFX - Sample Code

nnNnon org echpre gelé vatfx

-

HBox root = new HBox(); {
VBox coll = new VBox();
VBox col2 = new VBox();
root.addChildNodes(coll, col2);

coll.addChildNodes(
new SwtButton("abc"),
shape(new Polygon(50, 0, 100, 100, 0, 100), 0, 1, 0),
shape(new Pie(@, @, 100, 100, Angle.fromDeg(15), Angle.frombDeg(120)), 0, 1, 1),
new SwtButton("123"));

col2.addChildNodes(
shape(new Ellipse(@, 0, 70, 80), 1, 0, @)
shape(new Rectangle(@, 0, 100, 40), 0, 0, 1),
new SwtButton("foobar"),
shape(new RoundedRectangle(0, 0, 100, 100, 10, 10), 1, 0, 1));

// set root size and create scene

root.setPrefWidth(400); !
root.setPrefHeight(300);

return new Scene(shell, root);

(SELF-) DEMO - GEF4 SwtFX Examples*

ey evhgve gold vmite

*) Code base is available via Git tag “replica”

GEF4 SwtkX - Inrtial Prototype Features

GEF4 SwtFX JavaFX
Scene graph
Composite scene graph abstractions
Shape nodes
Control Nodes
Views, Charts, etc. G Ty
Transformations
Layouting
Clipping - = O
Event system
Event type hicrarchy 6
Event bubbling
Event capturing
Picking

Touch and gesture events

GEF4 SwthX - Initial Prototype Limitations

GEF4 SwtFX JavaFX
Caching G
Layout-Rools e I
Css-Styling e
Layout-Panes
3D - I
Propertics (bindable, observable) (EENIIEGENEEE GRS
Concurrency abstractions (G GRS
UI-Contros
Effects L L —

GEF4 SwthFX - Revised Scope & Future Plans

* Migrate SwtFX from a functionally limited alternative of

JavaFX into an extension:

* Use JavaFX to render everything except SWT

controls, I.e. specia

(SwtkFXCanvas) anc

ze Javatx.embed.swt.FXCanvas
Scene (SwtFXScene) to transparently

integrate SWT Controls via SwtFXAdapterNodes.

* Add JFace-like abstractions (viewer), so It can used as a
base layer for GEF4 Zest/Cloudio, etc.

GEF4 - My (Current) Vision

Based on SwtFX instead of
SW/|Face

GEF4 (Zest | Cloudio | MVC)

GEF4 Layouts GEF4 SwitkFX
GEF4 Geometry SWT JENZ1

SWT Controls embedded via
SwtFXControlAdapterNodes
into SwtFXCanvas

Primary rendering engine,
embedded into Eclipse Ul via
FXCanvas (SwtFXCanvas)

Image courtesy of AndiH / flicke

Please get Involved!

* Iry out early snapshots!

* Evaluate and Provide Feedback!

‘Report bugs, report enhancement requests!
* Contribute!
¥ * Participate in discussions (bugzilla, mailing list)

» Supply patches

Image courtesy of EricMagnuson / flickr

-~ Thank You! Questions!

http://wiki.eclipse.org/GEF/GEF4

