
Alexander Nyßen!
itemis AG!

Graphical Editing Framework Project Lead

4
Image courtesy of Julie Lafrance / flickr

GEF 3.x / Zest 1.x
• Standard for graphical editors/views in Eclipse!
• Mature project with quite long history

• Base technology with lot's of users (direct & indirect
through GMF/Graphiti)!

• Stable API, no breaking API changes since 2004 (GEF 3.0)

Image courtesy of peptic_ulcer/ flickr

GEF celebrated 10th Birthday in 2012!!

Initial contribution by IBM in 2002!
Image courtesy of Will Clayton / flickr

Draw2d & GEF (MVC)
• Initial contribution of Draw2d & GEF (MVC) by IBM in 2002.

GEF (MVC) - an interactive model-view-controller
framework, which fosters the implementation of SWT-
based tree editors and Draw2d-based graphical
editors (and views) for the Eclipse UI Workbench.

Draw2d - 2D rendering framework; lightweight
extension to SWT. May be used stand-alone or as
visualization technology for GEF (MVC).

Draw2d & GEF (MVC)

Zest
• Initial contribution of Zest by University of Victoria and

IBM Centre for Advanced Studies as part of Mylyn in
2005.!

• Joined in on GEF as third component with the 3.4 release
in 2007.

Zest - a visualization toolkit based on SWT and
Draw2d to support the implementation of views with
automatic or semi-automatic layout for the Eclipse
Workbench UI.

Zest

There is quite some decay…
• API is organically evolved and there are ~400 bugzillas,

out of which several would require to break it

Image courtesy of Pietro Izzo / flickr

Some Topics for a Renewal
• Support for other rendering platforms than SWT

(JavaFX)!
• Support for the E4 application model

• Support for new input devices (touch gestures)
• Re-thinking current componentization!
• Support for rotation and other transformations!
• Revision of connection handling (clipping, curved

connections, etc.)!
• Various renamings and restructurings on the detail level...

Image courtesy of racineur / flickr

Zest 2 (since 2010)
• A provisional Zest 2 component was initiated in 2010, to

develop the next generation Zest API.!
• Goal was to develop a new version of Zest in parallel to

the maintenance of Zest 1.x., with a provisional API!
• Sources were intended to be placed in its own Zest2 Git

repository, results were published separately via Eclipse
Marketplace.

Image courtesy of __sjg__ / flickr

Zest 2 - New Features
• Dot 4 Zest

• Cloudio

GEF4 (since 2011)
• GEF4 was initiated - in analogy to Zest 2 - to develop the next

generation Draw2d and GEF (MVC) API.!
• Similar to Zest2, development was intended to take place in

parallel to maintenance of Draw2d / GEF (MVC) 3.x !
!

• Initial plans (prior to 3.8): !
• Create new double-precision Geometry API before Juno

release. !
• Start to migrate the Draw2d and GEF (MVC) code base on

a step-by-step basis afterwards.

Image courtesy of —Tico— / flickr

GEF4 + Zest 2 = GEF4

Image courtesy of spadger / flickr

GEF4
• A unified provisional approach to develop the next

generation API.!
• Development takes place in parallel to maintenance of GEF

proper (Draw2D/GEF 3.x / Zest 1.x)
!

• Advantages of this procedure:!
• Clear distinction between GEF proper as the production and

GEF4 as the provisional component!
• Chance to not only refactor GEF components but the

componentization itself, which is only "historically" justified.

Image courtesy of edtechie99 / flickr

Status Quo (a year ago)
• GEF4 Geometry was finalized before Juno

• GEF4 Graphics was initiated before Kepler !
• Idea was to provide a common graphics abstraction over

SWT/AWT, and also JavaFX !
• GEF4 ‚Glyphs‘ (SwtFX) was planned:!

• Figures/Shapes abstractions inspired by Draw2d, SVG, and
JavaFX (SceneGraph)!

• Intended as replacement of Draw2d ‚Core'!
• Zest2 had been transferred to namespace and repository.

Image courtesy of pareeerica / flickr

GEF4 Geometry
• No distinction in low and high precision, but just a single double-

precision API (with built-in imprecision for comparisons).!
!

• Different geometric abstractions for different purposes:!
• Euclidean (Vector, Straight, Angle)!
• Projective (Vector3D, Straight3D)!
• Planar (Point, Dimension, Line, QuadraticCurve, CubicCurve,

BezierCurve, Polyline, PolyBezier, Ellipse, Rectangle, Pie, Arc, Polygon,
CurvedPolygon, RoundedRectangle, Ring, Region, Path)!
!

• Conversions to/from AWT and SWT (and between them)

GEF4 Planar Geometry - Overview

GEF4 Geometry - Examples

Status Quo (now)
• GEF4 Geometry further matured!
• GEF4 Cloudio extracted from GEF4 Zest code base, still

based on SWT/JFace (and GEF 3.x Draw2d)!
• GEF4 SwtFX under development; initial prototype being

revised!
• GEF4 MVC initiated, based on JavaFX, later also on SwtFX

Image courtesy of pareeerica / flickr

GEF4 SwtFX - Initial Scope
• Replacement of Draw2d 'Core', making use of JavaFX

key abstractions (Scene, Parent) !
• Combination of heavyweight (SWT Controls) and

lightweight nodes (Figures) in a single scene graph,
rendered on a SWT Canvas!
• SWT Controls wrapped into adapters!
• ShapeFigure based on GEF4 Geometry planar shapes!
• CanvasFigure provides a lightweight node that allows

painting on a Graphics*
*) based on former GEF4 Graphics code

GEF4 SwtFX - Sample Code

HBox hbox = new HBox();	
VBox col1 = new VBox();	
VBox col2 = new VBox();	
hbox.getChildren().addAll(col1, col2);	
HBox.setHgrow(col1, Priority.ALWAYS);	
HBox.setHgrow(col2, Priority.ALWAYS);	
	 	 	
col1.getChildren().addAll(
 new Button("abc"),	
 shape(new Polygon(50, 0, 100, 100, 0, 100), 0, 1, 0),	
 shape(new Arc(0, 0, 50, 50, 15, 120) {{ setType(ArcType.ROUND); }}, 0, 1, 1),	
 new Button("123"));	
	 	 	
col2.getChildren().addAll(
 shape(new Ellipse(30, 40, 30, 40), 1, 0, 0),	
 shape(new Rectangle(0, 0, 100, 50), 0, 0, 1),	
 new Button("foobar"),	
 shape(new Rectangle(0, 0, 100, 100) {{ setArcHeight(20); setArcWidth(20); }}, 1, 0, 1));	
	 	 	
// create scene (and set scene size)	
Scene scene = new Scene(hbox, 400, 300);	
stage.setScene(scene);	
stage.show();

HBox root = new HBox();	
VBox col1 = new VBox();	
VBox col2 = new VBox();	
root.addChildNodes(col1, col2);	!!!
col1.addChildNodes(
 new SwtButton("abc"),	
 shape(new Polygon(50, 0, 100, 100, 0, 100), 0, 1, 0),	
 shape(new Pie(0, 0, 100, 100, Angle.fromDeg(15), Angle.fromDeg(120)), 0, 1, 1),	
 new SwtButton("123"));	!
col2.addChildNodes(
 shape(new Ellipse(0, 0, 70, 80), 1, 0, 0)	
 shape(new Rectangle(0, 0, 100, 40), 0, 0, 1), 	
 new SwtButton("foobar"),	
 shape(new RoundedRectangle(0, 0, 100, 100, 10, 10), 1, 0, 1));	!
// set root size and create scene	
root.setPrefWidth(400);	
root.setPrefHeight(300);	
return new Scene(shell, root);

GEF4 SwtFX - Sample Code

HBox hbox = new HBox();	
VBox col1 = new VBox();	
VBox col2 = new VBox();	
hbox.getChildren().addAll(col1, col2);	
HBox.setHgrow(col1, Priority.ALWAYS);	
HBox.setHgrow(col2, Priority.ALWAYS);	
	 	 	
col1.getChildren().addAll(
 new Button("abc"),	
 shape(new Polygon(50, 0, 100, 100, 0, 100), 0, 1, 0),	
 shape(new Arc(0, 0, 50, 50, 15, 120) {{ setType(ArcType.ROUND); }}, 0, 1, 1),	
 new Button("123"));	
	 	 	
col2.getChildren().addAll(
 shape(new Ellipse(30, 40, 30, 40), 1, 0, 0),	
 shape(new Rectangle(0, 0, 100, 50), 0, 0, 1),	
 new Button("foobar"),	
 shape(new Rectangle(0, 0, 100, 100) {{ setArcHeight(20); setArcWidth(20); }}, 1, 0, 1));	
	 	 	
// create scene (and set scene size)	
Scene scene = new Scene(hbox, 400, 300);	
stage.setScene(scene);	
stage.show();

HBox root = new HBox();	
VBox col1 = new VBox();	
VBox col2 = new VBox();	
root.addChildNodes(col1, col2);	!!!
col1.addChildNodes(
 new SwtButton("abc"),	
 shape(new Polygon(50, 0, 100, 100, 0, 100), 0, 1, 0),	
 shape(new Pie(0, 0, 100, 100, Angle.fromDeg(15), Angle.fromDeg(120)), 0, 1, 1),	
 new SwtButton("123"));	!
col2.addChildNodes(
 shape(new Ellipse(0, 0, 70, 80), 1, 0, 0)	
 shape(new Rectangle(0, 0, 100, 40), 0, 0, 1), 	
 new SwtButton("foobar"),	
 shape(new RoundedRectangle(0, 0, 100, 100, 10, 10), 1, 0, 1));	!
// set root size and create scene	
root.setPrefWidth(400);	
root.setPrefHeight(300);	
return new Scene(shell, root);

(SELF-) DEMO - GEF4 SwtFX Examples*

*) Code base is available via Git tag “replica“

GEF4 SwtFX - Initial Prototype Features

GEF4 SwtFX - Initial Prototype Limitations

GEF4 SwtFX - Revised Scope & Future Plans

• Migrate SwtFX from a functionally limited alternative of
JavaFX into an extension:!
• Use JavaFX to render everything except SWT

controls, i.e. specialize javafx.embed.swt.FXCanvas
(SwtFXCanvas) and Scene (SwtFXScene) to transparently
integrate SWT Controls via SwtFXAdapterNodes.!

• Add JFace-like abstractions (viewer), so it can used as a
base layer for GEF4 Zest/Cloudio, etc.

Image courtesy of Ruben Holthuijsen / flickr

GEF4 - My (Current) Vision

GEF4 Geometry JavaFX

GEF4 SwtFXGEF4 Layouts

SWT

GEF4 (Zest | Cloudio | MVC)

Image courtesy of AndiH / flickr

Primary rendering engine,
embedded into Eclipse UI via

FXCanvas (SwtFXCanvas)

SWT Controls embedded via
SwtFXControlAdapterNodes

into SwtFXCanvas

Based on SwtFX instead of
SWT/JFace

Please get involved!
• Evaluate and Provide Feedback!!

• Try out early snapshots!!
• Report bugs, report enhancement requests!!

• Contribute!

• Participate in discussions (bugzilla, mailing list)!
• Supply patches

Image courtesy of EricMagnuson / flickr

Thank You! Questions?

http://wiki.eclipse.org/GEF/GEF4

Image courtesy of Bilal Kamoon / flickr

http://wiki.eclipse.org/GEF/GEF4

