

February 19^o 2019 - Grenoble

ECLIPSE TECHNOLOGIES TO DEVELOP BRAIN-IOT FRAMEWORK

ECLIPSE IOT DAY Maria Teresa Delgado (Eclipse Foundation) & Levent Gurgen (CEA)

OUTLINE

2

WHAT IS BRAIN-IOT?

BRAIN-IOT USE CASES

ECLIPSE FOUNDATION IN BRAIN-IOT

ECLIPSE PAPYRUS AND ECLIPSE SENSINACT

ECLIPSE TECHNOLOGIES INTEGRATION IN BRAIN-IOT

WHAT IS BRAIN-IOT

EU RESEARCH PROJECT

- Co-funded by the Horizon 2020 programme of the European Union
- Research and Innovation Action

3 YEAR DURATION

• January 2018 – December 2020

12 PARTNERS

- From 5 European countries: Italy, Germany, Spain, France and UK
- Including SMEs, Industry and Academy

POWERED BY ECLIPSE TECHNOLOGIES

• Eclipse Papyrus and Eclipse SensinAct

OT EUROPEAN AND PRIVACY PROJECTS

• BRAIN-IoT is part of the IoT-ESPP cluster

COLLABORATIONS

- Strong relationship with OSGi Alliance
- European IoT Large Scale Pilots projects
- Strong involvement in W3C consortium to define the WoT standard

Brain-IoT - Eclipse IoT Day

BRAIN-IOT FOCUS

- Framework for composability and deployment of heterogeneous IoT platforms
- Considering:
- Complex scenarios involving smart autonomous actuation
- Critical requirements in terms of dependability, security, privacy and safety
- Tightly integrated IoT and CPS systems

OPEN ISSUES IN IOT DOMAIN

HETEROGENEITY AND (LACK OF) INTEROPERABILITY

Heterogeneity of protocols, APIs, device models and data interchange formats hamper interoperability in IoT

IMPLEMENTING "SMART BEHAVIOURS" IN OPEN COLLABORATION CONTEXT

Difficulty to generically "bind" AI and ML solutions to IoT and CPS platforms

Lacking a solution that enables collaboration to achieve common tasks

ENFORCEMENT OF PRIVACY AND DATA OWNERSHIP POLICIES

A comprehensive solution able to give back control of privacy aspects to users is still missing

SECURITY AND SAFETY

Autonomous actuation in IoT systems calls for strong security requirements

SUSTAINABLE BUSINESS MODELS

Many IoT solutions on the market adopt fully centralized, cloud-oriented approaches but singular point of failures makes survivability and resiliency difficult in the long term

MARKET FRAGMENTATION

IoT platforms focused on verticals often associated with technology stacks

BRAIN-IOT FEATURES

لينا	
\rightarrow	
\Box	

IoT Cross-Platform Interoperability & Federation

Fully de-centralized, composable and dynamic federations of heterogeneous IoT platforms

Adoption of shared semantic models

Facilitates the deployment of smart, cooperative behavior by employing modular AI features

Establish Authentication, Authorization and Accounting (AAA)

Embedded privacy-awareness and privacy control features

Commissioning and reconfiguration

Dynamic commissioning and reconfiguration choosing among available platforms, modules implementations and services, along with edge-cloud balancing

BRAIN-IOT HIGH-LEVEL ARCHITECTURE

SCENARIOS

The viability of the proposed approaches is demonstrated in **two usage scenarios**, namely Service Robotics and Critical Infrastructure Management, as well as through a series of proof-of-concept demonstrations in **collaboration with on-going IoT large-scale pilot** initiatives.

The Critical Water Infrastructure Monitoring and Control use case focuses on the management of the water urban cycle in metropolitan environment of Coruña.

Service Robotics

The Service Robotics use case will involve several robotic platforms, like the opensource Robotics Operating System (ROS), which need to collaborate to scan a given warehouse and to assist humans in a logistics domain.

Critical Infrastructure Management

inks with European IoT Large Scale. Pilots

In addition to the first two usage scenarios, few other scenarios will be derived creating a link with European IoT Large Scale Pilots where BRAIN-IoT partners are involved in.

LOGISTIC ROBOTICS SCENARIO

WATER MANAGEMENT USE CASE

WATER MANAGEMENT USE CASE

Promoting use of Eclipse Technologies in

research projects

- Eclipse Papyrus and Eclipse SensinAct (but not only!)
- Community building around project results (like today ☺)
 - Updating and engaging Eclipse community in EU projects
 - Supporting publication of project results in the Eclipse Foundation platform

Brain-IoT - Eclipse IoT Day

Grenoble, February 19th

^{It} ECLIPSE[™]

FOUNDATION

ECLIPSE FOUNDATION IN BRAIN-IOT

Research@ ECLIPSE FOUNDATIONM

eclipse.org/research

open source is powering the

'tal enterprise

BOVER

PPAMC

BRAIN-IOT model-Based fRamework for dependable sensing

model-Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

ECLIPSE TECHNOLOGIES IN BRAIN-IOT

Levent Gurgen

CEA LETI

ECLIPSE SENSINACT: OPEN PLATFORM FOR SMARTER CITIES

Dr. Levent Gürgen levent.gurgen@cea.fr

Eclipse IoT Days, Grenoble February 19th 2019

TODAY: DOMAIN-CENTRIC, VERTICAL SOLUTIONS

Dr. Levent Gürgen

Illustrations from the EU FP7 BUTLER project

TOMORROW, HORIZONTAL SMART SOLUTIONS

SENSINACT – IOT PLATFORM FOR SMARTER CITIES

sensiNact Studio

MODULAR ARCHITECTURE

Dr. Levent Gürgen

EXTENSION POINTS

Dr. Levent Gürgen

. . .

leti

OPEN APIS FOR THIRD PARTY DEVELOPERS

Dr. Levent Gürgen

SERVICE-ORIENTED APPROACH

EXAMPLE SENSINACT SERVICE PROVIDER

SENSINACT SERVICE MODEL

Dr. Levent Gürgen

SENSING AND ACTUATION SERVICES

SENSINACT STUDIO - DEVELOPMENT ENVIRONMENT

sensiNact smart city platform has joined = eclipse

https://projects.eclipse.org/projects/technology.sensinact

LOOKING FOR CONTRIBUTIONS!

ACCESS TO VARIOUS CITY REAL-LIFE DATA IN REAL-TIME

BIGCLOUT: BIG DATA MEETING CLOUD OF THINGS HTTP://BIGCLOUT.EU

TRIALS PLANNING IN PILOT CITIES

GRENOBLE METROPOLE - MOBILITY DATA

EXPERIMENTATION AS A SERVICE

FESTIVAL EXPERIMENT EXAMPLES WITH FESTIVAL PLATFORM

Ceatech

WISE IQT Wordlwide Interoperability for SEmantics IoT

COLLECTED DATA

LoRa band

GPS location

PIQ Robot

- Number of turns with maximum angle ski
- Maximum angle of the skier from the vertical
- Number of turns with maximum velocity
- Maximum speed of entry into the turn of the skier
- Number of jump with maximum air time
- Maximum air time
- Number of jump with best score rotation
- Complexity of the jump
- Descent height

Crowd detector

- Number of persons in a given area

IOT INFRASTRUCTURE

THE APPLICATION

	Rang	Skieur	Points	
8	1	Alice	102,345	
	2	Bob	2,321	~
itat	istique	s	5.	le la Croix +
<i>.</i>	loc ctati	ctiques	H	Y
	ies stati	stiques		Tres
ole T	ableau d	es scor	es 🔨	S
			- Jul	ý.
App	lication	í.		1
0	propos		25	1 1
9	, propos			
			100	

HACKATHON ORGANIZED AT ECLIPSE IOT DAYS 2018

Winning idea: Dynamic slope ranking PRICE: 1 year ski-pass in Chamrousse

IoF2020: Internet of Food and Farm 2020

BIG WINE OPTIMIZATION - OBJECTIVES

- Improve the vine yield and wine production by defining, and implementing an IoT system able to gather the data, coming from different vineyards and cellars, to perform data analysis, system and risk management, and decision making.
- Provide to middle and small winegrowers and producers new tools to optimize resources (manpower, fertilizers, materials, electricity, water, etc.) and preserve the environment by reducing the use of pesticides, carbon print, etc.
- Deploy a cost effective precision viticulture management and a global vineyard control system in order to increase competitiveness.
- Optimize the use of inputs in wine-making by controlling all environmental factors affecting the process (temperatures, humidity, oxygen, etc.).

Dr. Levent Gürgen

The forest in the area of the IOT application

The Reynon vineyard with some elevation points

WEATHER AND WINERY: SENSORS

- Sensors for monitoring weather conditions: distributed in 5 vineyards of 125 hectares, with a density of at least 1 device every 2.5 hectare.
 - 9 Weather stations sensing Temperature, Hygrometry, Barometric pressure, Wind speed and direction, Solar radiation, Rainfall.
 - ✓ 35 sensors for Temperature and Hygrometry
- Sensors for monitoring winery conditions.
 - ✓ 27 sensors for Temperature and Hygrometry.
 - ✓ 26 Water meter readers.
 - ✓ 9 Electricity meter readers.

- Fixed sensors monitor, night after night, the evolution of the vine.
 - Specific camera and lighting for visible and near Infra Red images of the vine. On board processing reduces drastically the data length sent to the gateway.
 - Low spatial density but high temporal density.
- Data collected:
 - Phenological stages.
 - Disease symptoms.
- Low cost technologies for large distribution in the vineyard.
- A variation of this sensor exists for counting bugs in traps.

PHENOLOGICAL STAGES: MOBILE SENSORS

- Mobile sensors are mounted on tractors.
- They acquire images every meter along the tractor track with a dedicated camera.
- Images are stored on board all along the trip and transferred to gateway via WiFi once in the hangar.
- Data collected:
 - Phenological stages.
 - Vine vigor estimation.
 - Yield prediction.
- Data with high spatial density and low time density are then acquire.

eti

OVERALL DEPLOYMENT ARCHITECTURE

Isère deployment

Deployment Site Context

To Create a **continuum of care** that combines **human and technical assistance**, bridging the different moments in elderly person's life to limit the loss of autonomy and avoid unnecessary hospitalization.

Isère deployment

BRAIN-IOT

model-Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Eclipse Papyrus and Eclipse sensiNact in BRAIN-IoT

Levent Gürgen

CEA LETI

WHAT IS PAPYRUS?

<u>Few figures:</u>

- Started in 2007
- Eclipse project in 2010
- >100 m.year effort
- >2,5 millions LoC, 150 modules, 20k unitary and functional tests
- >30k downloads worldwide, each update

F. Noyrit et al., "Facade-Metamodel: Masking UML", proc of Models 2012.

S. Gérard et al., "Papyrus: A UML2 Tool For Domain-specific Language Modeling Model-based Engineering Of Embedded Real-time Systems", 2011.

Eclipse IoT Days – Grenoble 2019

D Springer

Holger Giese Gabor Karsai Edward Loe Bernhard Bumpe Bernhard Schätz (Eds.)

Systems

Model-Based Engineering of Embedded Real-Time

PAPYRUS MODELING

BRAIN-IOT

Papyrus Modeller

PAPYRUS CUSTOMIZATION FOR DOMAIN-SPECIFIC MODELING

PAPYRUS ECO-SYSTEM

Papyrus Modeller

SENSING AND ACTUATION SERVICES

SENSINACT STUDIO - DEVELOPMENT ENVIRONMENT

SENSINACT STUDIO: TOOL FOR IOT APPLICATION DEVELOPMENT AND DEPLOYMENT

SENSINACT STUDIO: TOOL FOR IOT APPLICATION DEVELOPMENT AND DEPLOYMENT

SENSINACT STUDIO: TOOL FOR IOT APPLICATION DEVELOPMENT AND DEPLOYMENT

Dr. Levent Gürgen

Eclipse IoT Days – Grenoble 2019 | 67

DEDICATED DOMAIN SPECIFIC LANGUAGE

SMART IOT IDE POWERED BY SENSINACT AND PAPYRUS

Human or meta-learner

CONTACTS

SHUAI LI

Project Manager, Research Engineer CEA LIST shuai.li@cea.fr

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 780089.

*Robotnik O_{emalcsa}

BRAIN-IOT

Urban Technology Alliance

Worldwide testing environment for smart city solutions

UTA provides city scale tesbeds

Smart city solutions need technical, economic, social validation before large scale deployment

UTA provides a matchmaking platform

Cities need neutral guidance, industry needs testing environment, researchers need real requirements

UTA provides best practices among cities all around the globe

> Yes, each city is unique; yet, today's wordwide urban challenges are very similar

What is UTA's main mission?

Bringing relevant stakeholders together to

test and validate smart city solutions

Cities come with their problems and experimentation space

Small and large companies come with their innovative solutions

Researchers and NPOs come with their expertise and neutral guidance

JOIN FORCES AND ORGANIZE SMART CITY DEPLOYMENTS, PROVIDE RECOMMENDATIONS AND

UTA current members

A vibrant community with important international actors

Initial testbed cities: Grenoble, Taipei, Busan, Daejeon, Sejong, Santander, Bordeaux, Fujisawa, Saitama, Tsukuba, Bristol, Belfast, West Midlands, Lodz, Hong Kong, Vancouver, etc. and many others are joining in the coming days

Prestigious institutions, experts in smart cities: CEA, KAIST, Keio University, Knowledge Capital, KETI, University of Tsukuba, Osaka University, University of Grenoble-Alpes, U. of Cantabria, etc. Continuously growing community...

Large international tech companies, network operators, device vendors, integrators, innovative SMEs and startups, law firms, consulting firms, insurance companies, artists, designers, etc.

Thank you for your attention!

JOIN US

Interested in being part of the UTA's vibrant community?

contact@urbantechnologyalliance.org

www.urbantechnologyalliance.org

Subscribe to our newsletter!

http://www.brain-iot.eu/

