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Modeling Ebola Data

Camacho, A., et al., Potential for large outbreaks of Ebola virus disease. Epidemics (2014),
http://dx.do1.org/10.1016/j.epidem.2014.09.003

Table 1
Previously published estimates of basic reproduction number, Ry, for Ebola.
Location Date R 95% (1 (if given) Reference
DRC 1995 1.83 Chowell et al. (2004)
365 3.05-433 Ferrari et al. (2005)
2.7 15-28 Legrand et al. (2007)
1.28 Lekone and Finkenstidt (20086)
2.22 1.9-273 Mdanguza eral. (2013)
1.93 1.74-2.78 White and Pagano (2008)
Uganda 20001  1.34 Chowell et al. {2004)
1.79 1.52-2.30 Ferrari et al. (2005)
2.7 2.5-4.1 Legrand et al. (2007)

Caveat: Hospital-based infection played a substantial
role in parameter fitting

Not possible to identify route of transmission nor

human behavior.

Revisited 1976 outbreak to reveal sources of

transmission
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Modeling Study of Ebola
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Susceptible to infection (S).
Incubation exposed class (E),
Infectious (I).

Assumed latent and incubation periods are
equivalent.

Recovered state (R);
Remain infectious and go into hospital (H);

Or die and remain infectious (D) until buried
(B).

Following hospitalisation, infectious hosts also
move either into the recovered or dead
compartment.




Temporal Reproductive
rates

Table 3

Estimates of the basic reproduction number, Ry, split into different component
transmission routes.

Parameter Route of transmission Estimates: median (95% CI)
Ry, Hospital via syringe 3.32(2.53-4.34)
Ropp Person-to-person (in 1.34(0.92-2.11)
community and during funeral)
Ry Overall 4.71(3.92-5.66)
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Conjectured Human Behavior

There was evidence that hospital and person-to-person transmission declined over the
course of the 1976 outbreak.

Epidemiological reports the community stopped coming to the outpatient department as
they associated the epidemic with the Yambuku Mission Hospital, which eventually was
closed on 30th September.

As time went on the population became very “suspicious” and did not touch the corpses
anymore, not even to bury them.
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Background: Networks

* Interconnected systems are
often modeled as a network

« Structure of static networks
has been well studied (Albert
and Barabasi 2002, Newman 2003,
plus gazillions of others)

« Some aspects of network
dynamics have been studied
(usually link dynamics or node
dynamics)

— Network growth-(Ben-Naim 2011)

— Synchronization dynamics on
nodes (Arenas et al. 2008)

Rewiring for adaptation, IB Schwartz, LB Shaw, Physics 3 (17) (2010)



Adaptive Epidemic Networks

In real networks, both the nodes and links
change in time — Dynamic networks

Node dynamics affects network geometry
Network geometry affects node dynamics
Adaptive networks

Feedback loop interaction

Many applications

— Human social networks

— Fades, terrorist cell networks

— Self-healing communications networks

— Swarming of autonomous agents

— Immune system networks
Dimension/connection changing

— Biological networks (e.g., food webs)
Lobsters (Behringer, Nature 2006)

Rules for Adaptive Network Dynamics

Epidemic Dynamics:
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Epidemics on Adaptive Social
Networks

S susceptible
Epidemic dynamics: I infected

: : R: recovered
Avoidance Behavior |
N,g: AB links
P r q p: infection rate
S IR >SS r. recovery rate
q. resusceptibility rate
w. rewiring rate

Network dynamics—rewiring:

rewire
1 rate w £
/‘ —
® o ©
SorR SorR SorR SorR

Run Monte Carlo simulation for N=10% nodes, K=10° links

(Shaw and Schwartz PRE 77: 066101, 2008)



BifurcationStructure-

Creation of New States (Erdos-Renyi graph)
* Rewiring leads to bistable |
behavior —_
— Extinct and endemic states 3
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Time series for degree of a single node:

degree
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Network structure analysis-
Degree Distribution
q=0.0016, r=0.002
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Extinction Processes
And

Vaccination Control



Rules for Network Dynamics

with Vaccination

Epidemic dynamics:
p

20N

4
Network dynamics—rewiring:

rewire
/ rate w

— ®
° o ©
SorV

SorV SorV SorV

S: susceptible
I: infected
V: vaccinated

p: infection rate

r. recovery rate

n(t): vaccination rate
q: resusceptibility rate
w. rewiring rate

Vaccination rate is Poisson
where events happen with
average frequency v and a
fraction 4 of susceptibles are
vaccinated in each event.

Run Monte Carlo simulation for N=10% nodes, K=10° links
L. B. Shaw and |. B. Schwartz, Phys. Rev. E (2010).
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Effect of vaccination and rewiring on degree

Vaccination occurs on susceptible nodes
In the adaptive network, susceptible nodes have higher degree due to
rewiring

Vaccination of high degree nodes provides better protection (e.g., Pastor-
Satorras and Vespignani PRE 65: 036104, 2002)

In the static network, high degree nodes tend to be infected and are not
vaccinated
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Controlling Adaptive Networks: Lifetime
of Endemic State

5
¥ 10

Poisson-distributed
pulse vaccine control

Compute lifetime of
the infected state

Average over 100
runs

Rewiring in
combination with
vaccination
significantly shortens
the disease lifetime
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Summary

Developed a model for epidemics with adaptation to account for
social interactions

Developed and analyzed a corresponding mean field model, which
captures many aspects of the full adaptive network system

We identified regimes of onset thresholds, new state creation as
functions of rewiring rates (adaptivity)-Possible oscillations
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