
1

confidentialPublic

openPASS - Scheduler

2

confidential

2

Public

Architectural perspective

„Old“ scheduler (before release 0.6)

• Priority lists are built for every timestep

• List management introduces a lot of runtime overhead

• Easy to adapt

„New“ scheduler

• Scheduled elements (tasks) are considered (semi-) static

• Based on their scope, tasks can be grouped into lists which are initialized

once at start up

• Tasks and their containing lists are designed to allow expansion and

automatic sorting based on task attributes during runtime

• This leads to support of static use cases (PCM) as well as dynamic ones

(runtime spawning of stochastic agents)

• Small overhead introduced due to dynamically added tasks. Compared to

the simulation time, list manipulation is only sporadic (i.e. a new agent is

added) and fast.

3

confidential

3

Public

Basic principle

• Handling of agent based and common tasks throughout the simulation

• Execution of a run is divided into 6 phases:

 Bootstrap ●

 Common ●

 NonRecurring●

 Recurring ●

 Finalize Recurring ●

 Finalize ●

● One-time execution at start of simulation

● Processed at each timestep

● One-time execution after end condition is reached (i.e. simulation duration)

4

confidential

4

Public

Task types and phases

Task type Scope Priority

Spawning Triggers agent spawning during spawntimr, Parse agent tasks 4

(agents have to be instantiated first)

EventDetector Execution of event detectors 3

Manipulator Execution of manipulators 2

(dependent on event detectors)

SyncGlobalData Synchronization of global data 1

Observation Update of observation modules 0

Trigger Execution of components (trigger functions) Dependent on component-priorities.

Independent of non-component priorities.
Update Execution of components (Update input/output)

5

confidential

5

Public

Task types and phases

Phase Category Task type Comment

Bootstrap static Observation --

Common static Spawning, EventDetector, Manipulator Initialization phase for whole simulator

NonRecurring dynamic Trigger, Update Used to init components. Task is deleted

after execution.

Recurring dynamic Trigger, Update Execution of agent components

FinalizeRecurring static SyncGlobalData Synchronization of world

Finalize static EventDetector, Manipulator,

Observation

Execution after reach of end condition

6

confidential

6

Public

Scheduler modules

Tasks.h

Specifies „how“ tasks look like.

Defines:

• TaskTypes and their static priorities

• constructors for different TaskItems based on

TaskTypes specialising a generic TaskItem

definition

• class „Tasks“ as TaskItem container

TaskBuilder.h

Helper class to:

• „create“ Bootstrap-, Common-,

FinalizeRecurring- and Finalize-Tasks

• „create“ Manipulator- and EventDetector

tasks.

• bind functions of above tasks to underlying

TaskItems

SchedulerTasks.h

„Management“ class for:

- calculation of scheduler timestamps

- access of tasks for given timestamp (filtering)

- deletion of recurring/non-recurring tasks

linked to an specific agent

Scheduler.h provides logic to function as “controller” for :

• check of end condition “simulation duration”

• systematic execution of tasks (phases) by requesting tasks for a given timestamp from SchedulerTasks

• supervision of agent based tasks, spawning of agents, triggering of agent removal

• managing abortion of a task

7

confidential

7

Public

Scheduler module hierarchy

„static“ lists

„dynamic“ lists

8

confidential

8

Public

Scheduling

For each simulation run the following steps are made:

1. Instantiate TaskBuilder and create Bootstrap, Common, FinalizeRecurring and Finalize tasks.

2. Instantiate and fill SchedulerTasks with built task lists.

3. Initial spawning

4. Execute bootstrap tasks

5. Execute common tasks

6. Update SchedulerTasks (spawning/removing, change component tasks)

7. Execute component tasks (non-recurring, recurring, finalize recurring)

8. Make timestep

9. Repeat steps 5 till 8 until end condition is reached

10. Execute finalize tasks

9

confidential

9

Public

Scheduler::Run

1) Instantiate SpawnControl and TaskBuilder

2) Call TaskBuilder to create Bootstrap-, Common- FinalizeRecurring-

and FinalizeTasks

3) Instantiate SchedulerTasks with above task lists and fixed update

rate of 100ms

SpawnControl is used to generate log messages if a task aborts (e.g. Incomplete scenario,

Agent generation error…). This is handled by checking the return value of each executed

task. If a task returns false ParseAbortReason(spawnControl, currentTime) is called and a

error message is created.

Each call generates and returns a List<TaskItems>. Each TaskItem has a fixed framework

update rate of 100ms.

As per definition TaskItems need to bind executing funtions interfaced as

std::function<bool()>.

If needed additonal parameters can be linked via std::ref(param) (e.g. BootstrapTasks link

ObservationNetworkInterface::UpdateTimeStep to runResults).

Tasks are converted to a multiset and implicitly sorted via overloaded operator< based on

their priority and TaskType.

Timestamps for execution are calculated.

10

confidential

10

Public

Scheduler::Run

4) Execute Bootstrap tasks

5) Do until (time <= simulation end time):

5.1) execute common tasks

5.2) update agents

Generic function ExecuteTasks is called for all Bootstrap tasks.

This invoks the UpdateTimeStep-method of the ObservationNetwork. Logging path is set

via referenced runResults.

SpawnControl::PullNewAgents is invoked. For each new Agent its modules are parsed

and new TaskItems are created (implicit sorting based on the module priority due to

multiset and overloaded operator<).

Recurring-/ and non-recurring agent tasks are added to the scheduler.

Invalid agents are queued for removal via Worldinterface::QueueAgentRemove

11

confidential

11

Public

Scheduler::Run

5.3) execute non-recurring tasks

5.4) execute recurring tasks

6) update current timestamp

7) clear active events

8) execute FinalizeTasks (t > simulation duration)

Updated Non-recurring (agent) tasks are consumed and deleted after execution.

Updated recurring (agent) tasks are executed.

SchedulerTasks::GetNextTimestamp is called and all timestamps (considering delays and

different cycle times of (updated) agent modules) are calculated. The next scheduled

timestamp > current timestamp is returned.

EventNetwork::ClearActiveEvents is called.

All FinalizeTasks are executed once. End of current run.

