e

' bt_r‘act Environment API

Requirements for components Map and VehicleController
|Jupp.tscheak@daimler.com, Gartringen, 2021-04-12

Mercedes-Benz
The best or nothing.

mailto:jupp.tscheak@daimler.com

Component ,VehicleController®

Requirements Of Components Map And VehicleController

Mercedes-Benz Requirements Abstract Environment API | RD/ASE | 12.04.2021

Component ,VehicleController®

A General Overview

Scenario Engine ‘

Vehicle Controller Model

IVehicleController ‘ ._I ’ [_:,,_

- ot
i et B e
bt et e g g + S (A & o
B e o tomp—— -
R .
———
-

The VehicleController interface
should make as few assumptions of
the underlying model implementatign
as possible.

Mercedes-Benz Requirements Abstract Environment API | RD/ASE | 12.04.2021

Component ,VehicleController®

VehicleController: Features

C++

virtual void EnableFeature(const std::string& name) = 0;
virtual void DisableFeature(const std::string& name) = 0;
virtual std::vector<std::string> GetFeaturesNames() const = 0;

Mercedes-Benz

A feature is a specific functionality provided
by the underlying VehicleController model
that can be enabled/disabled.

Example:

A model may implement the emotional state
of a human driver which is influencing the
desired velocity based on statistical
calculations. In certain situations this
behavior is unwanted and can be disabled
explicitely by calling:

DisableFeature (,,Emotion") ;

Requirements Abstract Environment API | RD/ASE | 12.04.2021

Component ,VehicleController®

VehicleController: Routes

C++

virtual void SetRoute(IRoute* route) = 0;
virtual const IRoute* GetRoute() const = 0;

Mercedes-Benz

A VehicleController's route is representing
the navigational information about the
destination and how it shall be reached.
In order to reach the destination, the
VehicleController needs to perform
navigational lane changes in front of
intersections based on its parameters.

Question:

Do we also need to have a mode where the
VehicleController is trying to follow a specific
trajectory?

Requirements Abstract Environment API | RD/ASE | 12.04.2021

Component ,VehicleController®

VehicleController: Vehicle

C++

virtual voild SetVehicle(IVehicle* vehicle) = 8;
virtual IVehicle* GetVehicle() = 0;

Mercedes-Benz

Setter/Getter for querying the controlled
IVehicle. The query of an IVehicleController
of a IVehicle is important as well since
Instances managing the world entities will
most probably store instances to IVehicles.
In order to achieve “God” knowledge to
provide an accident free simulation, a
VehicleController model needs to have
access to the state/properties of the
surrounding IVehicleControllers.

Requirements Abstract Environment API | RD/ASE | 12.04.2021

Component ,VehicleController®

VehicleController: Pause

C++

virtual bool IsPaused() const = 0;
virtual void SetPaused(bool paused = true) = 0;

Mercedes-Benz

Influences the property “pause” which
stops/resumes the calculation of the
underlying VehicleController model.

Example:

In certain situations the Scenario System
wants to overtake the control of a vehicle
e.g. to apply an unrealistic acceleration.
After the desired effect has been achieved,
control can again be returned to the vehicle
controller model. The state of
IVehicleController is preserved.

Requirements Abstract Environment API | RD/ASE | 12.04.2021

Component ,VehicleController®

VehicleController: Lateral commands

C++

virtual void ChangelLane(LaneChangeDirection lane change direction) = 8;
virtual void Overtake() = 8;

Mercedes-Benz

Question: Do we need to command certain
actions where lane changes are introduced?

Example:

A common use case in a scenario is to
command an IVehicleController to overtake
a certain vehicle. This should be done as
fast as possible but respecting traffic rules
not introducing unrealistic accelerations.
Please note that the same behavior might be
achieved by simply modifying parameters of
an IVehicleController (e.g. “urge to
overtake”).

Requirements Abstract Environment API | RD/ASE | 12.04.2021

Component ,VehicleController®

VehicleController: Car Following / Lane Change Models

C++

virtual void SetCarFollowingModel(ICarFollowingModel* car following model) = 8;
virtual const ICarFollowingModel* GetCarFollowingModel() const = 0;

virtual ICarFollowingModel* GetCarFollowingModel() = ©;

virtual void SetLaneChangeModel(ILaneChangeModel* lane change model) = @;
virtual const ILaneChangeModel* GetLaneChangeModel() const = 0;

virtual ILaneChangeModel* GetLaneChangeModel() = ©;

C++

class ICarFollowingModel {
public:
virtual units::acceleration::meters per second sgquared t GetAcceleration(IVehicle* wveh self, IVehicle* veh lead,
units::length::meter t ds lead) const = 0;

virtual units::length::meter t GetAdjustedHeadwayDistance(IVehicle* veh self, IVehicle* veh lead) const = 0;

}:

C++

class ILaneChangeModel {
public:
virtual LaneChangeDecision GetLaneChangeDecision(IVehicleController* vehicle controller,
IEnvironmentSimulator* environment simulator) = @;

Setter/Getter for accessing or
providing car following and lane
change models. Please note
that this might be a
contradiction to the previously
mentioned premise to make as
few assumptions of the model
as possible.

However, it is a common use
case to be able to provide a
scenario specific model.

Mercedes-Benz Requirements Abstract Environment API | RD/ASE | 12.04.2021 9

Component ,VehicleController®

VehicleController: Parameters

C++

virtual void SetParameters(IVehicleControllerParameters* parameters) = 0;
virtual IVehicleControllerParameters* GetParameters() const = 0;

C++

class IVehicleControllerParameters {

public:
virtual void SetDesiredVelocity(const units::velocity::meters per second t& desired velocity) = 0;
virtual units::velocity::meters per second t GetDesiredVelocity() const = 0;
virtual void SetMaxComfLongAcceleration(

const units::acceleration::meters per second squared t& max_comf long acceleration) = 0;
virtual units::acceleration::meters_per second squared t GetMaxComfLongAcceleration() const = @;
virtual void SetMaxComfLatAcceleration(

const units::acceleration::meters_per second squared_t& max_comf long acceleration) = 0;
virtual units::acceleration::meters per second squared t GetMaxComfLatAcceleration() const = 0;
virtual void SetMaxComfLongDeceleration(

const units::acceleration::meters per second squared t& max_comf long acceleration) = ©;
virtual units::acceleration::meters_per second squared_t GetMaxComfLongDeceleration() const = 0;
virtual void SetDesiredHeadwayTime(const units::time::second t& desired headway time) = 0;
virtual units::time::second t GetDesiredHeadwayTime() const = 0;
virtual void SetMinGapFront(const units::length::meter t& min gap front) = 8;

virtual units::length::meter t GetMinGapFront() const = ©;
virtual void SetPolitemess(const units::concentration::percent t& politness) = 0;
virtual units::concentration::percent t GetPoliteness() const = 0;

virtual void SetSafeDeceleration(const units::acceleration::meters_per second_squared t& safe_deceleration) = 0;

virtual units::acceleration::meters per second squared t GetSafeDeceleration() const = ©;
virtual void SetLaneChangeRightBias(

const units::acceleration::meters_per second squared t& lane change right_bias) = 0;
virtual units::acceleration::meters_per second squared t GetLaneChangeRightBias() const = @;
virtual void SetLaneChangeThreshold(

const units::acceleration::meters_per second squared_t& lane change threshold) = 0;
virtual units::acceleration::meters per second squared t GetLaneChangeThreshold() const = @;

Mercedes-Benz

Parameters influencing the behavior of an
IVehicleController. Please note that the
illustrated approach again is assuming too
much about the model implementation, e.g.
“LaneChangeRightBias” is a model
parameter of lane change model “MOBIL"
(Kesting, Treiber).

Maybe it is better to describe
IVehicleController parameters in a more
generic way and let the model
iImplementation take care of how to achieve
the desired behavior:

= “urge to overtake” [0..1]

» “respect speed limits” [0..1]

But of course also:

= “desired speed” [m/s]
» “headway time” [s]

“minimal gap front” [m]

Requirements Abstract Environment API | RD/ASE | 12.04.2021 10

Component ,VehicleController®

VehicleController: Parameter Factory

C++

enum class VehicleControllerType {
kCalm = 1,
kActive = 2,
kSporty = 3,
kaffective = 4,
kUnsecure = 5,
kAggressive = 6,
kTruck = 7
I H

class IVehicleControllerParameterFactory {
public:
virtual VehicleControllerParameters CreateParameterSet() = 0;
virtual VehicleControllerParameters CreateParameterSet(VehicleControllerType type) = 0;

};

Mercedes-Benz

Factory for providing
IVehicleControllerParameters that are used to
introduce a variance of the same model
Implementation.

Example:

Assume a IVehicleController model
implementation that is capable of driving on
German roads. Still, a wide variety of driver
behavior can be observed. In order to achieve
different behavior, the parameters have to be
different. A category of driver behavior is
provided by VehicleControllerType. The
implementation of
IVehicleControllerParameters should take
care of the statistically correct distribution of
the various driver types based on local
obserVvatinSs Abstract Environment API | RD/ASE | 12.04.2021 11

Component ,VehicleController®

VehicleController: IVehicleController Factory

C++

class IVehicleControllerFactory {
public:
virtual IVehicleController* CreateVehicleController(IVehicle* vehicle,
units::velocity::meters per second t desired velocity) = 0;
virtual IVehicleController* CreateVehicleController(IVehicle* vehicle,
const VehicleControllerParameters& parameters) = 0;

Factory for providing a specific
Implementation of the IVehicleController
Interface.

Mercedes-Benz Requirements Abstract Environment API | RD/ASE | 12.04.2021

12

Component ,VehicleController®

VehicleController: Calculation Results

Mercedes-Benz

Requirements Abstract Environment API | RD/ASE | 12.04.2021

13

Component ,VehicleController®

Use Case: Vehicle Controller Model Using Abstract AP

C++

auto* entity repo{environment simulator->GetEntityRepository()}; [EEEEE————_— [1]
auto* veh self{vehicle controller->GetVehicle()}; ! - P
const auto& se{entity repo->GetSurroundingEntities0f(veh self)}; [@ [|———
units::acceleration: :meters _per second squared t result{@ mps sg}; (ﬁ' ‘. a.
\ V)~ —_—
if (lane_change direction == LaneChangeDirection::kRight) {

const auto& se br{se.at(SurroundingVehicleLocation::kBackRight)};
auto* veh br{dynamic cast<scenario::abstract::IVehicle*>(se br.entity)}; @
scenario::abstract::ICarFollowingModel* cfm br{nullptr};

if (veh_br != nullptr && veh br-=GetVehicleController() != nullptr) {
cfm_br = veh br->GetVehicleController()->GetCarFollowingModel();

}
auto acc_br old{veh br != nullptr ? veh br->GetAcceleration(} : 0 mps sq};
auto acc_br new{cfm br != nullptr ? cfm br-=GetAcceleration(veh br, veh self, se br.distance) : 0@ mps sq};

auto dacc_br{acc _br new - acc_br old};

if (acc_br new > vehicle controller->GetParameters()->GetSafeDeceleration()) { CLC _ CLC _l_p(an - a:n —'I_ ao - au(_)) > Aa;th
\~""‘v"""/ \-.....\,,....-/ \"""v"""/

const auto& se bs{se.at(surroundingvehicleLocation: :kBackSame)};

auto* veh bs{dynamic cast<scenario::abstract::IVehicle*>(se_bs.entity)};

const auto& se fs{se.at(SurroundingVehicleLocation: :kFrontSame)};

auto* veh fs{dynamic cast<scenario::abstract::IVehicle*>(se fs.entity)};

scenario::abstract::ICarFollowingModel* cfm_bs{nullptr};

if (veh_bs != nullptr && veh bs->GetVehicleController() != nullptr) {
cfm_bs = veh_bs->GetVehicleController()->GetCarFollowingModel();

(1]

driver new follower old follower

}
auto acc_bs old{veh _bs != nullptr ? veh bs->GetAcceleration() : © mps sq};
auto acc_bs new{cfm_bs != nullptr ? cfm bs->GetAcceleration(veh bs, veh fs, se fs.distance) : 0 mps sq};

auto dacc_bs{acc_bs new - acc_bs old};

const auto& se fr{se.at(SurroundingVehicleLocation: :kFrontRight)};

auto* veh fr{dynamic cast<scenario::abstract::IVehicle*>(se fr.entity)};

scenario: :abstract::ICarFollowingModel* cfm_self{vehicle controller-=GetCarFollowingModel()};
auto acc self old{cfm self-»GetAcceleration(veh self, veh fs, se fs.distance)};

auto acc_self new{cfm self-»GetAcceleration(veh self, veh fr, se fr.distance)};

auto dacc_self{acc_self new - acc_self old};

result = dacc_self + vehicle controller->GetParameters()->GetPoliteness() * (dacc_bs + dacc_br) -
vehicle controller->GetParameters()->GetLaneChangeThreshold() +
vehicle controller->GetParameters()->GetLaneChangeRightBias();

1 https://mtreiber.de/publications/MOBIL_TRB.pdf

Mercedes-Benz Requirements Abstract Environment API | RD/ASE | 12.04.2021

Component ,VehicleController®

Requirements Of Components Map And VehicleController

@cnomenaismisor
- ;
g :
L])

IS

[

Utils

Mercedes-Benz Requirements Abstract Environment API | RD/ASE | 12.04.2021

15

Component Map

Micro- and Macroscopic Queries

Microscopic

Mercedes-Benz

Macroscopic

Requirements Abstract Environment API | RD/ASE | 12.04.2021

16

Component Map

Coordinate Systems

Mercedes-Benz

Basic:

= [|nertial: (X, Y, 2)

= Track: (Idgeaq» S, T)

= Lane: (Track, Id .. , Offset e
» Geo: (Lon, Lat,Alt)

Logical:
= Lane: (Track, Id .. , Offset e
= Offset always relative to driving direction.
Note: Right-hand vs. left-hand traffic.
» Methods:
» Lane GetLanePosAt(double dist);

» double GetDistBetween(Lane other);
. L7

Route:

= Provision of one continuous track.

= Basic coordinates could be used but with
regard to underlying route.

Lane identification:
» LaneRightmost
= LaneMiddle

= |LanelLeftmost

Requirements Abstract Environment API | RD/ASE | 12.04.2021

17

Component Map

Microscopic Query

Mercedes-Benz

Provision of a IQueryService interface:

» Transformation between the different
coordinate systems.

= Normal vector at position.

= Friction, curvature, angles (+derivatives) etc.
at position.

» Road/Lane marks (maybe part of
macroscopic query.)

Requirements Abstract Environment API | RD/ASE | 12.04.2021

18

c

Component Map

Macroscopic Query

Provision of a IMap interface:

lane,, := Edge(u, v)
weight,, := EdgeWeight(u, v)

Mercedes-Benz

General layout of road network graph, road vs. lane
based.

Traversal of graph: iterators, functions, adjacent vs.
consecutive lanes.

Concept of a lane weight? Re-usage of OSI types?

= Length

= Signs

= Lane marks
= FEtc.

Routing algorithms. Create IRoute using waypoints.
Traversal of junctions, turn directions etc.
Consideration of a Horizont concept and dynamic
reloading of parts of the map.

Requirements Abstract Environment API | RD/ASE | 12.04.2021

19

Component Map

Vehicle Relation Graph

Mercedes-Benz

Requirements Abstract Environment API | RD/ASE | 12.04.2021

20

