EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

EclipseLink/UserGuide/JPA/Print Version

From Eclipsepedia

< EclipseLink | UserGuide

Contents

m | Introduction to Java Persistence API
m 1.1 What Is Java Persistence API?
m 1.2 What Do You Need to Develop with JPA
m 1.2.1 Relational Database
m 1.2.2 Domain Model Classes
m 1.2.3 persistence.xml File
m 1.2.4 Object Relational Mapping Metadata
m 1.2.4.1 Metadata Annotations and ORM.xml File
m 1.2.4.2 Overriding Annotations with XML
m 1.2.4.2.1 Advantages and Disadvantages of Using Annotations
m 1.2.4.2.2 Advantages and Disadvantages of Using XML
1.2.5 Persistence Provider
1.2.6 Persistence Application Code
m 1.2.6.1 Container-Managed Entity Manager
m 1.2.6.2 Application-Managed Entity Manager
m 1.2.6.3 Transaction Management
m 1.2.6.3.1 JTA Transaction Management
m 1.2.6.3.2 Resource-Local Transactions
m 2 Introduction to EclipseLink JPA
m 2.1 Using Metadata Annotations
= 2.2 Using XML
m 2.3 Overriding and Merging XML
m 2.3.1 Overriding and Merging Examples
m 2.3.2 Overriding and Merging Rules
2.3.2.1 Persistence Unit Metadata
2.3.2.2 Entity Mappings
2.3.2.3 Mapped Superclass
2.3.2.4 Entity override and merging rules
2.3.2.5 Embeddable
2.4 Defaulting Properties
2.5 Configuring an Entity
= 2.5.1 Configuring an Entity Identity
m 2511 @ld
m 2.5.1.2 @IdClass
= 2.5.1.3 @Embeddedld
m 2.5.1.4 @GeneratedValue
m 2.5.2 Configuring Sequence Generation
m 2.5.2.1 @SequenceGenerator
m 2.5.2.2 @TableGenerator
m 2.5.3 Configuring Locking
m 2.6 Declaring Basic Property Mappings
m 2.6.1 @Basic
m 2.6.2 @Enumerated

1 of 186

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

m 2.6.3 @Temporal
m 2.6.4 @Lob
m 2.6.5 @Transient
m 2.7 Mapping Relationships
2.7.1 @OneToOne
2.7.2 @ManyToOne
2.7.3 @OneToMany
2.7.4 @ManyToMany
2.7.5 @MapKey
2.7.6 @OrderBy
m 2.8 Mapping Inheritance
m 2.8.1 @Inheritance
= 2.8.2 @MappedSuperclass
= 2.8.3 @DiscriminatorColumn
= 2.8.4 @DiscriminatorValue
m 2.9 Using Embedded Objects
2.9.1 @Embeddable
2.9.2 @Embedded
2.9.3 @AttributeOverride
2.9.4 @AttributeOverrides
2.9.5 @AssociationOverride
2.9.6 @AssociationOverrides
m 3 Using EclipseLink JPA Extensions
m 3.1 Using EclipseLink JPA Extensions for Mapping
3.1.1 How to Use the @BasicCollection Annotation
3.1.2 How to Use the @BasicMap Annotation
3.1.3 How to Use the @CollectionTable Annotation
3.1.4 How to Use the @PrivateOwned Annotation
= 3.1.4.1 What You May Need to Know About Private Ownership of Objects
3.1.5 How to Use the @JoinFetch Annotation
3.1.6 How to Use the (@Mutable Annotation
3.1.7 How to Use the @Transformation Annotation
3.1.8 How to Use the @ReadTransformer Annotation
3.1.9 How to Use the @WriteTransformer Annotation
3.1.10 How to Use the @WriteTransformers Annotation
3.1.11 How to Use the @VariableOneToOne Annotation
3.1.12 How to Use the Persistence Unit Properties for Mappings
m 3.2 Using EclipseLink JPA Converters
3.2.1 How to Use the @Converter Annotation
3.2.2 How to Use the @TypeConverter Annotation
3.2.3 How to Use the @ObjectTypeConverter Annotation
3.2.4 How to Use the @StructConverter Annotation
m 3.2.4.1 Using Structure Converters to Configure Mappings
m 3.2.5 How to Use the @Convert Annotation
m 3.3 Using EclipseLink JPA Extensions for Entity Caching
m 3.3.1 How to Use the @Cache Annotation
= 3.3.1.1 What You May Need to Know About Version Fields
m 3.3.2 How to Use the Persistence Unit Properties for Caching
= 3.3.3 How to Use the @TimeOfDay Annotation
m 3.3.4 How to Use the @ExistenceChecking Annotation
m 3.4 Using EclipseLink JPA Extensions for Customization and Optimization
m 3.4.1 How to Use the @Customizer Annotation
m 3.4.2 How to Use the Persistence Unit Properties for Customization and Validation
m 3.4.3 How to Use the Persistence Unit Properties for Optimization

2 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

3.5 Using EclipseLink JPA Extensions for Copy Policy
m 3.5.1 How to Use the @CopyPolicy Annotation
= 3.5.2 How to Use the @CloneCopyPolicy Annotation
m 3.5.3 How to Use the @InstantiationCopyPolicy Annotation
3.6 Using EclipseLink JPA Extensions for Declaration of Read-Only Classes
m 3.6.1 How to Use the @ReadOnly Annotation
3.7 Using EclipseLink JPA Extensions for Returning Policy
m 3.7.1 How to Use the @Returnlnsert Annotation
m 3.7.2 How to Use the @ReturnUpdate Annotation
3.8 Using EclipseLink JPA Extensions for Optimistic Locking
m 3.8.1 How to Use the @OptimisticLocking Annotation
3.9 Using EclipseLink JPA Extensions for Stored Procedure Query
= 3.9.1 How to Use the @NamedStoredProcedureQuery Annotation
m 3.9.2 How to Use the @StoredProcedureParameter Annotation
® 3.9.3 How to Use the @NamedStoredProcedureQueries Annotation
3.10 Using EclipseLink JPA Extensions for JDBC
= 3.10.1 How to Use EclipseLink JPA Extensions for JDBC Connection Communication
= 3.10.2 How to Use EclipseLink JPA Extensions for JDBC Connection Pooling
3.11 Using EclipseLink JPA Extensions for Logging
3.12 Using EclipseLink JPA Extensions for Session, Target Database and Target Application Server
3.13 Using EclipseLink JPA Extensions for Schema Generation
3.14 Using EclipseLink JPA Extensions for Tracking Changes
m 3.14.1 How to Use the @ChangeTracking Annotation
m 3.14.2 How to Use the Persistence Unit Properties for Change Tracking
= 3.14.3 What You May Need to Know About the Relationship Between the Change Tracking
Annotation and Persistence Unit Property
3.15 Using EclipseLink JPA Query Customization Extensions
m 3.15.1 How to Use EclipseLink JPA Query Hints
3.15.1.1 Cache Usage
3.15.1.2 Query Type
3.15.1.3 Bind Parameters
3.15.1.4 Fetch Size
3.15.1.5 Timeout
3.15.1.6 Pessimistic Lock
3.15.1.7 Batch
3.15.1.8 Join Fetch
3.15.1.9 Refresh
3.15.1.10 Read Only
3.15.1.11 Result Collection Type
m 3.15.2 How to Use EclipseLink Query API in JPA Queries
3.15.2.1 Creating a JPA Query Using the EclipseLink Expressions Framework
3.15.2.2 Creating a JPA Query Using an EclipseLink DatabaseQuery
3.15.2.3 Creating a JPA Query Using an EclipseLink Call Object
3.15.2.4 Using Named Parameters in a Native Query
3.15.2.5 Using JP QL Positional Parameters in a Native Query
3.15.2.6 Using JDBC-Style Positional Parameters in a Native Query
m 3.16 Using EclipseLink JPA Weaving
m 3.16.1 How to Configure Dynamic Weaving for JPA Entities Using the EclipseLink Agent
m 3.16.2 How to Configure Static Weaving for JPA Entities
m 3.16.2.1 To Configure Static Weaving for JPA Entities
m 3.16.3 How to Disable Weaving Using EclipseLink Persistence Unit Properties
m 3.16.3.1 To Disable Weaving Using EclipseLink Persistence Unit Properties
= 3.16.4 What You May Need to Know About Weaving JPA Entities
= 3.17 What You May Need to Know About EclipseLink JPA Lazy Loading

3 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

= 3.18 What You May Need to Know About Overriding Annotations in JPA
m 3.18.1 Overriding Annotations with eclipselink-orm.xml File
m 3.18.2 Overriding Annotations with XML
m 3.18.2.1 Disabling Annotations
m 3.18.2.2 Advantages and Disadvantages of Using Annotations
m 3.18.2.3 Advantages and Disadvantages of Using XML
m 3.19 What You May Need to Know About EclipseLink JPA Overriding Mechanisms
= 3.20 What You May Need to Know About Using EclipseLink JPA Persistence Unit Properties
m 3.20.1 Allowing Zero Value Primary Keys
m 3.21 Avoiding Cleartext Passwords
m 4 Configuring a EclipseLink JPA Application
m 4.1 Configuring Oracle Database Proxy Authentication for a JPA Application
= 4.1.1 How to Provide Authenticated Reads and Writes of Secured Data Through the Use of an
Exclusive Isolated Client Session
m 4.1.2 How to Provide Authenticated Writes for Database Auditing Purposes with a Client Session
m 4.1.3 How to Define Proxy Properties Using EntityManagerFactory
m 4.2 Setting Up Packaging
m 5 Developing Applications Using EclipseLink JPA
= 5.1 Using Application Components
m 5.1.1 How to Obtain an Entity Manager Factory
m 5.1.1.1 Obtaining an Entity Manager Factory in Java EE Application Server Environment
m 5.1.1.2 Obtaining an Entity Manager Factory in Java SE Environment
= 5.1.2 How to Obtain an Entity Manager
m 5.1.2.1 Obtaining an Entity Manager in Java EE Application Server Environment
m 5.1.2.2 Obtaining an Entity Manager in Java SE Environment
m 5.1.3 What You May Need to Know About Entity Managers and Their Factories
m 5.1.4 How to Use a Persistence Context
m 5.1.4.1 Using an Extended Persistence Context
m 5.1.5 What You May Need to Know About Persistence Contexts and Persistence Units
m 5.1.5.1 Persistence Unit
m 5.2 Querying for an Entity
= 5.2.1 How to Use the Entity Manager find Method
m 5.2.2 What You May Need to Know About Querying with Java Persistence Query Language
m 5.2.3 What You May Need to Know About Named and Dynamic Queries
m 5.3 Persisting Domain Model Changes
5.3.1 How to Use JTA
5.3.2 How to Use RESOURCE LOCAL
5.3.3 How to Configure Flushing and Set Flush Modes
5.3.4 How to Manage a Life Cycle of an Entity
m 5.3.4.1 Merging Detached Entity State
m 5.3.4.2 Using Detached Entities and Lazy Loading
= 5.3.5 What You May Need to Know About Persisting with JP QL
® 5.3.6 What You May Need to Know About Persisting Results of Named and Dynamic Queries
m 5.4 Using EclipseLink JPA Extensions in Your Application Development
m 5.4.1 How to Use Extensions for Query
m 5.4.1.1 Using Query Hints
m 5.4.1.2 What You May Need to Know About Query Hints
m 5.4.1.3 Using the Expression API
5.4.2 How to Configure Lazy Loading
5.4.3 How to Configure Change Tracking
5.4.4 How to Configure Fetch Groups
5.4.5 How to Use Extensions for Caching
5.4.6 What You May Need to Know About EclipseLink Caching
5.4.7 What You May Need to Know About Cache Coordination

4 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

5.4.8 How to Configure Cascading
5.4.9 What You May Need to Know About Cascading Entity Manager Operations
m 5.4.10 How to Use EclipseLink Metadata
m 5.4.10.1 Using EclipseLink Project
m 5.4.10.2 Using sessions.xml File
5.4.11 How to Use Events and Listeners
m 5.4.11.1 Using Session Events
m 5.4.11.2 Using an Exception Handler
5.4.12 What You May Need to Know About Database Platforms
® 5.4.13 What You May Need to Know About Server Platforms
m 5.4.14 How to Optimize a JPA Application
m 5.4.14.1 Using Statement Caching
m 5.4.14.2 Using Batch Reading and Writing
5.4.15 How to Perform Diagnostics
m 5.4.15.1 Using Logging
m 5.4.15.2 Using Profiling
m 5.4.15.3 Using JMX
m 6 Packaging and Deploying EclipseLink JPA Applications
m 6.1 Packaging an EclipseLink JPA Application
6.1.1 How to Specify the Persistence Unit Name
6.1.2 How to Specify the Transaction Type, Persistence Provider and Data Source
6.1.3 How to Specify Mapping Files
6.1.4 How to Specify Managed Classes
6.1.5 How to Add Vendor Properties
6.1.6 How to Set Up the Deployment Classpath
6.1.7 What You May Need to Know About Persistence Unit Packaging Options
6.1.8 What You May Need to Know About the Persistence Unit Scope
6.1.9 How to Perform an Application Bootstrapping
m 6.2 Deploying an EclipseLink JPA Application
m 6.2.1 How to Deploy an Application to OC4J
m 6.2.2 How to Deploy an Application to Generic Java EE 5 Application Servers

Introduction to Java Persistence API

This section introduces concepts of Java Persistence API and provides general information on it.

Related Topics

What Is Java Persistence API?

The Java Persistence API (JPA) is a lightweight framework for Java persistence (see Persisting Objects) based on Plain
Old Java Object (POJO). JPA is a part of EJB 3.0 specification. JPA provides an object relational mapping approach that
lets you declaratively define how to map Java objects to relational database tables in a standard, portable way. You can
use this API to create, remove and query across lightweight Java objects within both an EJB 3.0-compliant container and a
standard Java SE 5 environment.

For more information, see the following:

m Considering JPA Entity Architecture
= JSR 220 EJB 3.0 with JPA 1.0 specifications (http://jcp.org/en/jsr/detail?id=220)

50f 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

What Do You Need to Develop with JPA

To start developing with JPA, you need the following:

Relational Database

Domain Model Classes
persistence.xml File

Object Relational Mapping Metadata
Persistence Provider

Persistence Application Code

Relational Database

To develop your applications with JPA, you can use any relational database.

Domain Model Classes

Your domain model should consist of classes representing entities—lightweight persistent domain objects. The easiest way
to define an entity class is by using the @Ent ity annotation (see Using Metadata Annotations), as the following example
shows:

g g e

1
@Entity

1 public class Employee implements Serializable {
1

1

L e e e e e e e E e E e E E E E E E E Er EEE E m m e E e m e e e e e m e m e = = = -

For more information on entities, see the following:

Section 2.1 "Requirements on the Entity Class" of the JPA Specification (http:/jcp.org/en/jsr/detail?id=220)
Section 8.1 "Entity" of the JPA Specification (http://jcp.org/en/jsr/detail 7id=220)

Considering JPA Entity Architecture

Configuring an Entity

persistence.xml File

Use the persistence.xml file to package your entities.

For more information and examples, see the following:

m Section 6.2.1 "persistence.xml file" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)
= What You May Need to Know About Using EclipseLink JPA Persistence Unit Properties

Object Relational Mapping Metadata

Object relational mapping metadata specifies the mapping of your domain model classes to the database.

You can express this metadata in the form of annotations and/or XML.

6 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Metadata Annotations and ORM.xml File

A metadata annotation represents a Java language feature that lets you attach structured and typed metadata to the source
code. Annotations alone are sufficient for the metadata specification—you do not need to use XML. Annotations for object
relational mapping are in the Jjavax.persistence package. For more information and examples, see Chapter 8
"Metadata Annotations" of the JPA Specification (http://jcp.org/en/jsr/detail7id=220)

An object relational mapping XML file is optional. If you choose to provide one, then it should contain mapping
information for the classes listed in it. The persistence provider loads an orm.xm1 file (or other mapping file) as a
resource. If you provide a mapping file, the classes and mapping information specified in the mapping file will be used.
For more information and examples, see the following:

= Using XML

= Section 6.2.1.6 "mapping-file, jar-file, class, exclude-unlisted-classes" of the JPA Specification (http://jcp.org/en/jsr
/detail?id=220)

Overriding Annotations with XML

XML mapping metadata may combine with and override annotation metadata. For more information and examples, see the
following:

= Section 10.1 "XML Overriding Rules" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)
m Overriding Annotations with XML

Advantages and Disadvantages of Using Annotations

Metadata annotations are relatively simple to use and understand. They provide in-line metadata located with the code that
this metadata is describing—you do not need to replicate the source code context of where the metadata applies.

On the other hand, annotations unnecessarily couple the metadata to the code. Thus, changes to metadata require changing
the source code.

Advantages and Disadvantages of Using XML

The following are advantages of using XML.:

® no coupling between the metadata and the source code;
m compliance with the existing, pre-EJB 3.0 development process;
= support in IDEs and source control systems;

The main disadvantages of mapping with XML are the complexity and the need for replication of the code context.

Persistence Provider

The persistence provider supplies the implementation of the JPA specification.

The persistence provider handles the object relational mapping of the relationships, including their loading and storing to
the database (as specified in the metadata of the entity class), and the referential integrity of the relationships (as specified
in the database).

7 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

For example, the EclipseLink persistence provider ensures that relational descriptors are created for annotated objects, as
well as mappings are created based on annotations.

Persistence Application Code

To manage entities (see Domain Model Classes) in your persistence application, you need to obtain an entity manager
from an EntityManagerFactory. How you get the entity manager and its factory largely depends on the Java
environment in which you are developing your application.

Container-Managed Entity Manager

In the Java EE environment, you acquire an entity manager by injecting it using the @PersistenceContext annotation
(dependency injection), as the Obtaining an Entity Manager Through Dependency Injection example shows, or using a
direct lookup of the entity manager in the JNDI namespace, as the Performing JNDI Lookup of an Entity Manager example
shows.

Obtaining an Entity Manager Through Dependency Injection

I T I T I T I I I B

1
@PersistenceContext !
, public EntityManager em; '
! 1

Note: You can only use the @PersistenceContext annotation injection on session beans,
servlets and JSP.

Performing JNDI Lookup of an Entity Manager

@Stateless
' @PersistenceContext (name="ProjectEM", unitName="Project")
public class ProjectSessionBean implements Project {
@Resource
SessionContext ctx;

1

1

1

I

! public void makeCurrent () {

! EntityManager em = (EntityManager)ctx.lookup ("ProjectEM") ;
1

1

1

The container would manage the life cycle of this entity manager—your application does not have to create it or close it.

For more information and examples, see the following sections of the JPA Specification (http://jcp.org/en/jsr
/detail ?id=220) :

= Section 3.1 "EntityManager"

m Section 5.2.1 "Obtaining an Entity Manager in the Java EE Environment"
m Section 5.3.1 "Obtaining an Entity Manager Factory in a Java EE Container"

8 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Application-Managed Entity Manager

In the Java SE environment, not the container but the application manages the life cycle of an entity manager. You would
create this entity manager using the EntityManagerFactory's method createEntityManager. You have to use
the javax.persistence.Persistence class to bootstrap an EntityManagerFactory instance, as this
example shows:

Application-Managed Entity Manager in the Java SE Environment

public class Employee {

public static void main (String[] args) {
EntityManagerFactory emf =
Persistence.createEntityManagerFactory ("EmpService") ;
EntityManager em = emf.createEntityManager () ;

em.close () ;
emf.close();

Notice that you need to explicitly close the entity manager and the factory.

In the Java EE environment, you can use the application-managed entity managers as well. You would create it using the
@PersistenceUnit annotation to declare a reference to the EntityManagerFactory for a persistence unit, as the
following example shows:

B e e e e e e e e e e T T -

1
@PersistenceUnit !
. EntityManagerFactory emf; X
I 1

Note: You can only use the @PersistenceContext annotation injection on session beans,
servlets and JSP.

For more information and examples, see the following sections of the JPA Specification (http://jcp.org/en/jsr
/detail?1d=220) :

m Section 5.2.2 "Obtaining an Application-managed Entity Manager"
m Section 5.3.2 "Obtaining an Entity Manager Factory in a Java SE Environment"

Transaction Management

Transactions define when new, changed or removed entities are synchronized to the database.
JPA supports the following two types of transaction management:

m JTA Transaction Management
m Resource-Local Transactions

9 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Container-managed entity managers always use JTA transactions. Application-managed entity managers may use JTA or
resource-local transactions. The default transaction type for Java EE application is JTA.

You define the transaction type for a persistence unit and configure it using the persistence.xml file (see
persistence.xml File).

For more information, see Section 5.5 "Controlling Transactions" of the JPA Specification (http://jcp.org/en/jsr
/detail?id=220) .

JTA Transaction Management

JTA transactions are the transactions of the Java EE server.

As section 5.5.1 "JTA Entity Managers" of the JPA Specification (http://jcp.org/en/jsr/detail7id=220) defines, "An entity
manager whose transactions are controlled through JTA is a JTA entity manager. A JTA entity manager participates in the
current JTA transaction, which is begun and committed external to the entity manager and propagated to the underlying
resource manager."

Resource-Local Transactions

Resource-local transactions are the native transactions of the JDBC drivers that are referenced by a persistence unit. Your
application explicitly controls these transactions. Your application interacts with the resource-local transactions by
acquiring an implementation of the EntityTransaction interface from the entity manager.

For more information and examples, see the following sections of the JPA Specification (http://jcp.org/en/jsr
/detail?1d=220) .

m Section 5.5.2 "Resource-local Entity Managers"
m Section 5.5.2.1 "The EntityTransaction Interface"

Copyright Statement

Introduction to EclipseLink JPA

This section introduces EclipseLink implementation of Java Persistence API.

Related Topics

As a specification, JPA needs to be implemented by vendors or open source projects.

EclipseLink provides a complete, EJB 3.0-compliant JPA implementation. It provides complete compliance for all of the
mandatory features, many of the optional features, and some additional features. The additional nonmandatory
functionality includes the following:

m object-level cache;

m distributed cache coordination;

m extensive performance tuning options;
m enhanced Oracle Database support;

10 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

m advanced mappings;
m optimistic and pessimistic locking options;
m extended annotations and query hints.

EclipseLink offers support for deployment within an EJB 3.0 container. This includes Web containers and other non-EJB
3.0 Java EE containers. For more information, see Deploying an EclipseLink JPA Application.

Through its pluggable persistence capabilities EclipseLink can function as the persistence provider in a compliant EJB 3.0
container.

For more information, see Introduction to EclipseLink.
You can perform object-relational mapping with EclipseLink JPA by the means of doing the following:

Using Metadata Annotations

Using XML

Overriding and Merging XML
Defaulting Properties

Configuring an Entity

Declaring Basic Property Mappings
Mapping Relationships

Mapping Inheritance

Using Embedded Objects

Using Metadata Annotations

An annotation is a simple, expressive means of decorating Java source code with metadata that is compiled into the
corresponding Java class files for interpretation at run time by a JPA persistence provider to manage persistent behavior.

You can use annotations to configure the persistent behavior of your entities. For example, to designate a Java class as a
JPA entity, use the @Ent ity annotation (see Section 8.1 "Entity" of the JPA Specification (http://jcp.org/en/jsr
/detail?id=220)) as follows:

1
:@Entity

1 public class Employee implements Serializable {
1

1

You can apply annotations at three different levels: at the class, method, and field levels.
For more information and examples, see the following:

m Chapter 8 "Metadata annotations" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)
m Using EclipseLink JPA Extensions

EclipseLink defines a set of proprietary annotations. You can find them in the org.eclipselink.annotations
package.

EclipseLink annotations expose some features of EclipseLink that are currently not available through the use of JPA
metadata.

11 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Using XML

You can use XML mapping metadata on its own, or in combination with annotation metadata, or you can use it to override
the annotation metadata.

If you choose to include one or more mapping XML files in your persistence unit, each file must conform and be valid
against the orm 1 0.xsd schema located at http://java.sun.com/xml/ns/persistence/orm 1 0.xsd.
This schema defines a namespace called http://java.sun.com/xml/ns/persistence/orm that includes all of
the ORM elements that you can use in your mapping file.

This example shows a typical XML header for a mapping file:

XML Header for Mapping File

<?xml version="1.0" encoding="UTF-8"?> .
' <entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm" !
] xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" !
: xdi:schemalocation="http://java.sun.com/xml/ns/persistence/orm !
| http://java.sun.com/xml/ns/persistence/orm 1 0.xsd" 1
' version="1.0"> E
1

The root element of the mapping file is called entity-mappings. All object relational XML metadata is contained
within this element. The subelements of entity-mappings can be categorized into four main scoping and functional
groups: persistence unit defaults, mapping file defaults, queries and generators, and managed classes and mappings. There
is also a special setting that determines whether annotations should be considered in the metadata for the persistence unit.

For more information and examples, see Section 10.1 "XML Overriding Rules" of the JPA Specification (http://jcp.org
/en/jsr/detail71d=220) .

EclipseLink provides a set of persistence unit properties that you can specify in your persistence.xml file, orina
property map file (eclipse.persistence.config.PersistenceUnitProperties). For more information,
see What You May Need to Know About Using EclipseLink JPA Persistence Unit Properties.

Similar to EclipseLink annotation extensions, EclipseLink persistence unit properties expose some features of EclipseLink
that are currently not available through the use of JPA metadata.

For more information, see Using EclipseLink JPA Extensions.
Overriding and Merging XML

You can use EclipseLink’s native metadata xml file, EclipseLink-ORM.XML, to override mappings defined in JPA’s
configuration file orm.xm1 and provide EclipseLink with extended ORM features. For more information on JPA
extensions for mapping, see Using EclipseLink JPA Extensions.

The EclipseLink-ORM.XML file defines the object-relational mapping metadata for EclipseLink. It is built from the
existing orm.xml file which makes it more intuitive, requires minimum configuration, and easy to override. For more
information, see Section 10.1 "XML Overriding Rules" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220) .

To override orm.xml file's mapping, you must define the META-INF/eclipselink-orm.xml file in the project.
When both orm.xml and eclipselink-orm.xml are specified, the contents of eclipselink-orm.xml override
orm.xml and any other JPA mapping file specified in the persistence unit. If there are overlapping specifications in
multiple ORM files, the files are merged if they are no conflicting entities.

Note: The order of files defined in persistence.xml does not define the order of their processing. The files are

12 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

processed, merged and overidden as required. For more information, see Overriding and Merging Examples.

The EclipseLink-ORM.XML file can be referenced for inclusion in a persistence unit’s metadata through any of the
following files or methods:

File/Method Description
META-INF/eclipselink-orm.xml Provides mapping overriding capabilities.
META-INF/orm.xml The default ORM file provided with JPA.

Referenced as persistence unit mapping file in Does not provide mapping overriding capability, but can
persistence.xml be used for merging mapping files.

Overriding and Merging Examples

Example 1

B META-INF/orm.xml - defines Entity A with the mappings b and c.
B META-INF/eclipselink-orm.xml - defines Entity A with the mappings for ¢ and d.
m Result - Entity A will contain the mapping b (from orm. xml1), mapping ¢ and d (from eclipselink-orm.xml)

Example 2

® META-INF/orm.xml - defines Entity A with the mappings b and ¢

B META-INF/some-other-mapping-file.xml - defines Entity B with mappings a and b

m META-INF/eclipselink-orm.xml - defines Entity A with the mappings for c and d and Entity B with the

mapping b and ¢

m Result
= Entity A will contain the mapping b (from orm.xm1l), mapping c and d (fromeclipselink-orm.xml)
= Entity B will contain the mapping a (from some-other-mapping-£file), mappings b and ¢ (from

eclipselink-orm.xml)

Example 3

META-INF/orm.xml - defines Entity A with the mappings b and c.

META-INF/eclipse-orm.xml - defines Entity A with the mappings c and d.
META-INF/some-other-mapping-file.xml - defines Entity A with the mapping x.

Result - Entity A will contain the mapping b (from orm. xml), mapping ¢ and d (from eclipselink-orm.xml)
and mapping x (from some-other-mapping-file)

Example 4

® META-INF/orm.xml - defines Entity A with the mappings b and c.

m META-INF/extensions/eclipselink-orm.xml - defines defines Entity A with the mappings ¢ and d.
Note: This file is added through a <mapping-file> tag in the persistence.xml

m Result - Exception generated for conficting specifications for mapping c.

Example 5

m META-INF/orm.xml - defines Entity A with the mappings b and c.

m META-INF/Jjpa-mapping-file.xml - defines Entity A with the mappings a and d.

B META-INF/extensions/eclipse-mapping-file.xml - defines defines Entity A with the mappings ¢ and
d.

m Result - Exception generated for conficting specifications for mapping ¢ or d (which ever is processed first).

13 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

Overriding and Merging Rules

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

The following sections outlines elements defined in orm.xml and their specific overriding in greater detail.

Persistence Unit Metadata

In EclipseLink-ORM. XML, a persistence-unit-metadata specification merges or overrides the values of existing

persistence-unit-metadata specification.

entity-mappings/ persistence-
unit-metadata

xml-mapping-metadata-complete

persistence-unit-defaults/schema

persistence-unit-defaults/catalog

persistence-unit-defaults/access

entity-mappings/persistence-
unit-metadata/persistence-unit-defaults
/cascade-persist

entity-mappings/persistence-

unit-metadata/persistence-unit-defaults
/entity-listeners

Entity Mappings

Rule

Full
override

Full
override

Full
override

Full
override

Full
override

Merge

Description

If specified, the complete set of mapping metadata
for the persistence unit is contained in the XML
mapping files for the persistence unit.

If a schema setting exists, then the EclipseLink-
ORM.XML's schema setting overrides the existing
setting, or creates a new schema setting.

If a catalog setting exists, then the EclipseLink-
ORM.XML's catalog setting overrides the existing
setting, or creates a new catalog setting

If an access setting exists, then the EclipseLink-
ORM.XML's access setting overrides the existing
setting, or creates a new access setting.

If a cascade-persist setting exists, then the
EclipseLink-ORM.XML's cascade-persist setting
overrides the existing setting, or creates a new
cascade-persist setting.

If an entity-listeners exists, then the EclipseLink-
ORM.XML's entity-listeners will be merged with the
list of all entity-listeners from the persistence unit.

Entities, embeddables and mapped superclasses are defined within entity-mappings. EclipseLink-ORM.XML's entities,
embeddables and mapped superclasses are added to the persistence unit. The following table describes the top-level

elements of the entity-mappings sections:

entity-

Description

The package element specifies the package of the classes listed within the

subelements and attributes of the same mapping file only. It is only applicable to
those entities that are fully defined within the EclipseLink-ORM.XML file, else its

usage remains local and is same as described in the JPA specification.

The catalog element applies only to the subelements and attributes listed within

. Rule
mappings/
package None
catalog None

the EclipseLink-ORM.XML file that are not an extension to another mapping file.
Otherwise, the use of the catalog element within the EclipseLink-ORM.XML file

remains local and is same as described in the JPA specification.

14 of 186

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

The schema element applies only to the subelements and attributes listed within
the EclipseLink-ORM.XML file that are not an extension to another mapping file.
Otherwise, the use of the schema element within the EclipseLink-ORM.XML file
remains local and is same as described in the JPA specification.

schema None

The access element applies only to the subelements and attributes listed within
the EclipseLink-ORM.XML file that are not an extension to another mapping file.
Otherwise, the use of the access element within the EclipseLink-ORM.XML file
remains local and is same as described in the JPA specification.

access None

A sequence-generator is unique by name. The sequence-generator defined in the
EclipseLink-ORM.XML will override a sequence-generator of the same name
defined in another mapping file. Outside of the overriding case, an exception is
thrown if two or more sequence-generators with the same name are defined in
one or across multiple mapping files.

sequence- Full
generator override

A table-generator is unique by name. The table-generator defined in the
EclipseLink-ORM.XML will override a table-generator of the same name defined
in another mapping file. Outside of the overriding case, an exception is thrown if
two or more table-generators with the same name are defined in one or across
multiple mapping files.

table- Full
generator override

A named-query is unique by name. The named-query defined in the EclipseLink-
ORM.XML will override a nhamed-query of the same name defined in other

Full mapping files. Outside of the overriding case, an exception is thrown if two or

named-query

override more named-querys with the same name are defined in one or across multiple
mapping file.
A named-native-query is unique by name. The named-native-query defined in the
named- Eul EclipseLink-ORM.XML will override a named-native-query of the same name

defined in other mapping files. Outside of the overriding case, an exception is
thrown if two or more named-native-querys with the same name are defined in
one or across multiple mapping files.

native-query override

A sql-result-set-mapping is unique by name. The sql-result-set-mapping defined
in the EclipseLink-ORM.XML will override a sql-result-set-mapping of the same
name defined in other mapping files. Outside of the overriding case, an exception
is thrown if two or more sql-result-set-mapping entities with the same name are
defined in one or across multiple mapping files.

sql-result- Full
set-mapping override

Mapped Superclass

A mapped-superclass can be defined completely, or with specific elements to provide extensions to a mapped-superclass
from another mapping file. The following table lists individual override and merging rules:

entity-
mappings/mapped- Rule Description
superclass

If an id-class setting exists, then the EclipseLink-ORM.XML's
id-class Full override | id-class setting overrides the existing setting, or creates a new
id-class setting.

)) If an exclude-default-listeners setting exists, then the EclipseLink-
exclude-default-listeners Full override ' orM.XML's exclude-default-listeners setting will be applied. If the

15 of 186 11/25/2009 2:46 PM

exclude-superclass-

listeners

entity-listeners

pre-persist

post-persist

pre-remove

post-remove

pre-update

post-update

post-load

attributes

class

accCess

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

Full override

Merge and
full override

Full override

Full override

Full override

Full override

Full override

Full override

Full override

Merge and

mapping
level
override

None

Full override

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

exclude-default-listeners setting is not specified, it will not
override an existing setting, that is essentially turning it off.

If an exclude-superclass-listeners setting exists, then the
EclipseLink-ORM.XML's exclude-superclass-listeners setting will
be applied. If exclude-superclass-listeners setting is not specified,
it will not override an existing setting, that is essentially turning it
off.

If an entity-listeners setting exists, then the EclipseLink-
ORM.XML's entity-listeners setting will override and merge with
an existing setting, or creates a new entity-listeners setting all
together.

Note: An entity listener override must be complete. All lifecycle
methods of that listener must be specified and no merging of
individual lifecycle methods of an entity listener is allowed. The
class name of the listener is the key to identify the override.

If a pre-persist setting exists, then the EclipseLink-ORM.XML's
pre-persist setting overrides the existing setting, or creates a new
pre-persist setting.

If a post-persist setting exists, then the EclipseLink-ORM.XML's
post-persist setting overrides the existing setting, or creates a
new post-persist setting.

If a pre-remove setting exists, then the EclipseLink-ORM.XML's
pre-remove setting overrides the existing setting, or creates a
new pre-remove setting.

If a post-remove setting exists, then the EclipseLink-ORM.XML's
post-remove setting overrides the existing setting, or creates a
new post-remove setting.

If a pre-update setting exists, then the EclipseLink-ORM.XML's
pre-update setting overrides the existing setting, or creates a
new pre-update setting.

If a post-update setting exists, then the EclipseLink-ORM.XML's
post-update setting overrides the existing setting, or creates a
new post-update setting.

If a post-load setting exists, then the EclipseLink-ORM.XML's
post-load setting overrides the existing setting, or creates a new
post-load setting.

If the attribute settings (id, embedded-id, basic, version,
many-to-one, one-to-many, one-to-one, many-to-many,
embedded, transient) exist at the mapping level, then the
EclipseLink-ORM.XML's attributes merges or overrides the
existing settings, else creates new attributes.

If an access setting exists, then the EclipseLink-ORM.XML's
access setting overrides the existing setting, or creates a new
access setting. It also overrides the default class setting.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

metadata-complete

Full override

Entity override and merging rules

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

If a metadata-complete setting exists, then the EclipseLink-
ORM.XML's metadata-complete setting will be applied. If
metadata-complete setting is not specified, it will not override an
existing setting, that is essentially turning it off.

An entity can be defined completely, or with specific elements to provide extensions to an entity from another mapping
file. The following table lists individual override and merging rules:

entity-
mappings/entity
table

secondary-table

primary-key-join-
column

id-class

inheritance

discriminator-value

discriminator-
column

sequence-generator

table-generator

named-query

17 of 186

Rule

Full override

Full override

Full override

Full override

Full override

Full override

Full override

Full override

Full override

Merge and
full override

Comments

The table definition overrides any other table setting (with the same
name) for this entity. There is no merging of individual table values.

The secondary-table definition overrides another secondary-table setting
(with the same name) for this entity. There is no merging of individual
secondary-table(s) values.

The primary-key-join-column(s) definition overrides any other primary-
key-join-column(s) setting for this entity. There is no merging of the
primary-key-join-column(s). The specification is assumed to be complete
and these primary-key-join-columns are the source of truth.

If an id-class setting exists, then the EclipseLink-ORM.XML's id-class
setting overrides the existing setting, or creates a new id-class setting.

If an inheritance setting exists, then the EclipseLink-ORM.XML's
inheritance setting overrides the existing setting, or creates a new
inheritance setting.

If a discriminator-value setting exists, then the EclipseLink-ORM.XML's
discriminator-value setting overrides the existing setting, or creates a
new discriminator-value setting.

If a discriminator-column setting exists, then the EclipseLink-ORM.XML's
discriminator-column setting overrides the existing setting, or creates a
new discriminator-column setting.

A sequence-generator is unique by name. The sequence-generator
defined in EclipseLink-ORM.XML overrides sequence-generator of the
same name defined in other mapping files. Outside of the overriding
case, an exception is thrown if two or more sequence-generators with
the same name are defined in one or across multiple mapping files.

A table-generator is unique by name. The table-generator defined in
EclipseLink-ORM.XML overrides table-generator of the same name
defined in other mapping files. Outside of the overriding case, an
exception is thrown if two or more table-generators with the same name
are defined in one or across multiple mapping files.

A named-query is unique by nhame. The named-query defined in
EclipseLink-ORM.XML overrides named-query of the same name defined
in other mapping files. Outside of the overriding case, an exception is
thrown if two or more named-query elements with the same name are

11/25/2009 2:46 PM

named-native-query

sql-result-
set-mapping

exclude-default-
listeners

exclude-superclass-
listeners

entity-listeners

pre-persist

post-persist

pre-remove

post-remove

pre-update

post-update

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

Merge and
full override

Merge and
full override

Full override

Full override

Full override

Full override

Full override

Full override

Full override

Full override

Full override

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

defined in one or across multiple mapping files.

A named-native-query is unique by name. The named-native-query
defined in EclipseLink-ORM.XML overrides named-native-query of the
same name defined in other mapping files. Outside of the overriding
case, an exception is thrown if two or more named-native-query
elements with the same name are defined in one or across multiple
mapping files.

A sqgl-result-set-mapping is unique by name. The sql-result-set-mapping
defined in EclipseLink-ORM.XML overrides sql-result-set-mapping of the
same name defined in other mapping files. Outside of the overriding
case, an exception is thrown if two or more sql-result-set-mapping
elements with the same name are defined in one or across multiple
mapping files.

If an exclude-default-listeners setting exists, then the EclipseLink-
ORM.XML's exclude-default-listeners setting will be applied. If an
exclude-default-listeners setting is not specified, it will not override an
existing setting, that is essentially turning it off.

If an exclude-superclass-listeners setting exists, then the EclipseLink-
ORM.XML's exclude-superclass-listeners setting will be applied. If an
exclude-superclass-listeners setting is not specified, it will not override
an existing setting, that is essentially turning it off.

If an entity-listeners setting exists, then the EclipseLink-ORM.XML's
entity-listeners setting will override and merge with an existing setting,
or creates a new entity-listeners setting all together.

Note: An entity listener override must be complete. All lifecycle
methods of that listener must be specified and no merging of individual
lifecycle methods of an entity listener is allowed. The class hame of the
listener is the key to identify the override.

If a pre-persist setting exists, then the EclipseLink-ORM.XML's
pre-persist setting overrides the existing setting, or creates a new
pre-persist setting.

If a post-persist setting exists, then the EclipseLink-ORM.XML's
post-persist setting overrides the existing setting, or creates a new
post-persist setting.

If a pre-remove setting exists, then the EclipseLink-ORM.XML's
pre-remove setting overrides the existing setting, or creates a new
pre-remove setting.

If a post-remove setting exists, then the EclipseLink-ORM.XML's
post-remove setting overrides the existing setting, or creates a new
post-remove setting.

If a pre-update setting exists, then the EclipseLink-ORM.XML's
pre-update setting overrides the existing setting, or creates a new
pre-update setting.

If a post-update setting exists, then the EclipseLink-ORM.XML's
post-update setting overrides the existing setting, or creates a new
post-update setting.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

post-load

attributes

association-override

name

class

accCess

metadata-complete

Embeddable

Full override
Merge and
mapping

level
override

Merge and
full override

Full override

None

Full override

Full override

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

If a post-load setting exists, then the EclipseLink-ORM.XML's post-load
setting overrides the existing setting, or creates a new post-load setting.

If the attribute settings (id, embedded-id, basic, version, many-to-one,
one-to-many, one-to-one, many-to-many, embedded, transient) exist at
the mapping level, then the EclipseLink-ORM.XML's attributes merges or
overrides the existing settings, else creates new attributes.

If an association-override setting exists, then the EclipseLink-ORM.XML's
association-override setting overrides the existing setting, or creates a
new association-override setting.

If a name setting exists, then the EclipseLink-ORM.XML's name setting
overrides the existing setting, or creates a new name setting.

If an access setting exists, then the EclipseLink-ORM.XML's access
setting overrides the existing setting, or creates a new access setting. It
also overrides the default class setting.

If a metadata-complete setting exists, then the EclipseLink-ORM.XML's
metadata-complete setting will be applied. If a metadata-complete
setting is not specified, it will not override an existing setting, that is
essentially turning it off.

An embeddable can be defined wholely or may be defined so as to provide extensions to an embeddeable from another
mapping file. Therefore, we will allow the merging of that classes metadata. The individual override rules for that
metadata is tabled below.

entity-

mappings/embeddable Rule Description
If the attribute settings (id, embedded-id, basic, version,
Override many-to-one, one-to-many, one-to-one, many-to-many,
attributes and merae embedded, transient) exist at the mapping level, then the
9 EclipseLink-ORM.XML's attributes merges or overrides the existing
settings, or creates new attributes.
class None
Full If an access setting exists, then the EclipseLink-ORM.XML's access
access override setting overrides the existing setting, or creates a new access
setting. It also overrides the default class setting.
If a metadata-complete setting exists, then the EclipseLink-
Full ORM.XML's metadata-complete setting will be applied. If a
metadata-complete . o PR .
override metadata-complete setting is not specified, it will not override an

Defaulting Properties

existing setting, that is essentially turning it off.

Each annotation has a default value (consult the JPA specification for defaults). A persistence engine defines defaults that
apply to the majority of applications. You only need to supply values when you want to override the default value.

19 of 186

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Therefore, having to supply a configuration value is not a requirement, but the exception to the rule. This is known as
configuration by exception.

Note: You should be familiar with the defaults to be able to change the behavior when
necessary.

Configuring an Entity

You can configure your entity's identity, as well as the locking technique and sequence generation option for your entity.

Configuring an Entity Identity

Every entity must have a persistent identity, which is an equivalent of a primary key in a database table that stores the
entity state.

By default, EclipseLink persistence provider assumes that each entity has at least one field or property that serves as a
primary key.

You can generate and/or configure the identity of your entities by using the following annotations:

= @ld

= @IdClass

= @Embeddedld

®m @GeneratedValue

m @TableGenerator

® @SequenceGenerator

You can also use these annotations to fine-tune how your database maintains the identity of your entities.

For more information on the EclipseLink artifacts configured by these JPA metadata, refer to Configuring Primary Keys.

@ld
Use the @Id annotation to designate one or more persistent fields or properties as the entity's primary key.

For each entity, you must designate at least one of the following:

® one @Id
® one @EmbeddedId
= multiple @Id and an @IdClass

Note: The last option in the preceding list — @Id and @TIdClass combination — is applicable to
composite primary key configuration.

The @Id annotation does not have attributes.

20 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

By default, EclipseLink persistence provider chooses the most appropriate primary key generator (see (@GeneratedValue)
and is responsible for managing primary key values: you do not need to take any further action if you are satisfied with the
persistence provider's default key generation mechanism.

This example shows how to use this annotation to designate the persistent field empID as the primary key of the
Employee table.

Usage of @ld Annotation

Pttt ittt g
E@Entity !
' public class Employee implements Serializable { .
! erd :
' private int empID; !
1 1
: |
L o o o :

The @Id annotation supports the use of EclipseLink converters (see Using EclipseLink JPA Converters).

For more information and examples, see Section 9.1.8 "Id Annotation" of the JPA Specification (http://jcp.org/en/jsr
/detail ?id=220) .

@IldClass

Use the @TdClass annotation to specify a composite primary key class (usually made up of two or more primitive, JDK
object types or Entity types) for an entity or MappedSuperclass.

Note: Composite primary keys typically arise during mapping from legacy databases when the
database key is comprised of several columns.

A composite primary key class has the following characteristics:

It is a POJO class.

It is a public class with a public no-argument constructor.

If you use property-based access, the properties of the primary key class are public or protected.

It is serializable.

It defines equals and hashCode methods. The semantics of value equality for these methods must be consistent
with the database equality for the database types to which the key is mapped.

m |ts fields or properties must correspond in type and name to the entity primary key fields or properties annotated
with @Id.

Alternatively, you can make the composite primary key class an embedded class owned by the entity (see @EmbeddedId).

The @IdClass annotation has a required attribute value that you set to the class to specify this class as a composite
primary key class (see @AttributeOverride).

The Nonembedded Composite Primary Key Class example shows a nonembedded composite primary key class. In this
class, fields empName and birthDay must correspond in name and type to properties in the entity class. The Usage of
@]IdClass Annotation example shows how to configure an entity with this nonembedded composite primary key class using
the @TdClass annotation. Because entity class fields empName and birthDay are used in the primary key, you must
also annotate them using the @ Id annotation (see @]Id).

21 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Nonembedded Composite Primary Key Class

private String empName;
private Date birthDay;

public EmployeePK () {
}

public String getName () {
return this.empName;

}

public void setName (String name) {
this.empName = name;

public long getDateOfBirth () {
return this.birthDay;
}

public void setDateOfBirth (Date date) {
this.birthDay = date;
}

public int hashCode () {
return (int)this.empName.hashCode () ;

}

public boolean equals (Object obj) {

if (obj == this) return true;

if (! (obj instanceof EmployeePK)) return false;
1f (obj == null) return false;

EmployeePK pk = (EmployeePK) obj;

return pk.birthDay = this.birthDay && pk.empName.equals (this.empName) ;

e
)

'@TdClass (EmployeePK.class)
@Entity
public class Employee implements Serializable/{

1
. |
: :
: :
| @Id String empName; E
: @Id Date birthDay; :
! 1
! 1

1

For more information and examples, see Section 9.1.15 "IdClass Annotation" of the JPA Specification (http://jcp.org/en/jsr
/detail?id=220) .

@EmbeddedId

Use the @EmbeddedId annotation to specify an embeddable composite primary key class (usually made up of two or
more primitive or JDK object types) owned by the entity.

22 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Note: Composite primary keys typically arise during mapping from legacy databases when the
database key is comprised of several columns.

A composite primary key class has the following characteristics:

m |t is a POJO class.

It is a public class with a public no-argument constructor.

If you use property-based access, the properties of the primary key class are public or protected.

It is serializable.

It defines equals and hashCode methods. The semantics of value equality for these methods must be consistent
with the database equality for the database types to which the key is mapped.

Alternatively, you can make the composite primary key class a nonembedded class (see @IdClass).
The @EmbeddedId annotation does not have attributes.

This example shows a typical composite primary key class annotated with @Embeddable. The Usage of @Embeddedld
Annotation example shows how to configure an entity with this embeddable composite primary key class using the
@EmbeddedId annotation.

Embeddable Composite Primary Key Class

23 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

private String empName;
private long empID;

public EmployeePK () {
}

public String getName () {
return this.empName;

}

public void setName (String name) {
this.empName = name;

}

public long getId() {
return this.empID;

public void setId(long id) {
this.empID = id;
}

public int hashCode () {
return (int)this.empName.hashCode ()+ this.empID;

)

}

public boolean equals (Object obj) {
if (obj == this) return true;
if (! (obj instanceof EmployeePK)) return false;
if (obj == null) return false;
EmployeePK pk = (EmployeePK) obj;
return pk.empID == this.empID && pk.empName.equals (this.empName) ;

}

}
B e e e m e e e m m e e e e e e e e = = = = e = = = e = = = e e = = = = = = = -

@Entity
public class Employee implements Serializable/{

EmployeePK primaryKey;

public Employee {
}

@EmbeddedId
public EmployeePK getPrimaryKey () {
return primaryKey:

}

public void setPrimaryKey (EmployeePK pk) {
primaryKey = pk;

For more information and examples, see Section 9.1.14 "Embeddedld Annotation" of the JPA Specification (http://jcp.org

24 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

/en/jsr/detail?1d=220) .

@GeneratedValue

Use the @GeneratedValue annotation to enable EclipseLink persistence provider to generate unique identifiers for
entity primary keys (see @Id).

This annotation lets you do the following:

m override the type of identity value generation selected by the persistence provider for your database if you feel
another generator type is more appropriate for your database or application;

m override the primary key generator name selected by the persistence provider if this name is awkward, a reserved
word, incompatible with a preexisting data model, or invalid as a primary key generator name in your database.

The @GeneratedValue annotation has the following attributes:

m generator — The default value of this attribute is the name that EclipseLink persistence provider assigns to the
primary key generator it selects.
If the generator name is awkward, a reserved word, incompatible with a preexisting data model, or invalid as a
primary key generator name in your database, set the value of this attribute to the St ring generator name you
want to use.

You are not required to specify the value of this attribute.
® strategy — By default, EclipseLink persistence provider chooses the type of primary key generator that is most
appropriate for the underlying database.
If you feel that another generator type is more appropriate for your database or application, set the value of this
attribute to one of the following enumerated values of the GenerationType enumerated type:
m AUTO (default) — specify that EclipseLink persistence provider should choose a primary key generator that is
most appropriate for the underlying database.

Note: By default, EclipseLink chooses the TABRLE strategy using a table named

SEQ GEN_ TABLE, with SEQ NAME and SEQ COUNT columns, with
allocationSize of 50 and pkColumnValue of SEQ GEN. The default
SEQUENCE used is database sequence SEQ GEN SEQUENCE with
allocationSize of 50. Note that the database sequence increment must match the
allocation size.

®m TABLE — specify that EclipseLink persistence provider assign primary keys for the entity using an underlying
database table to ensure uniqueness (see @TableGenerator).

® SEQUENCE — specify that EclipseLink persistence provider use a database sequence (see
(@SequenceGenerator).

Note:SEQUENCE strategy is only supported on Oracle Database.

m IDENTITY — specify that EclipseLink persistence provider use a database identity column. Setting this
value will indicate to the persistence provider that it must reread the inserted row from the table after an
insert has occurred. This will allow it to obtain the newly generated identifier from the database and put it
into the in-memory entity that was just persisted. The identity must be defined as part of the database schema
for the primary key column. Identity generation may not be shared across multiple entity types.

Note: IDENTITY strategy is supported on Sybase, DB2, SQL Server, MySQL,
Derby, JavaDB, Informix, and Postgres databases.

Note: There is a difference between using IDENTITY and other id generation

25 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

strategies: the identifier will not be accessible until after the insert has occurred — it is
the action of inserting that caused the identifier generation. Due to the fact that
insertion of entities is most often deferred until the commit time, the identifier would
not be available until after the transaction has been committed.

Note: We do not recommend using the IDENTITY strategy for it does not support
preallocation.

You are not required to specify the value of the strategy attribute. This example shows how to use
automatic id generation. This will cause EclipseLink persistence provider to create an identifier value and
insert it into the id field of each Employee entity that gets persisted.

Using Automatic Id Generation

\@Entity
! public class Employee implements Serializable {

1
1
1
1
1
1 1
1 1
! @Id '
! @GeneratedValue (strategy=GenerationType.AUTO) '
1 private int id; 1
: |
1 1
1 1
1 1

A

Caution: Be careful when using the automatic id generation: the persistence provider
has to pick its own strategy to store the identifiers, but it needs to have a persistent
resource, such as a table or a sequence, to do so. The persistence provider cannot
always rely upon the database connection that it obtains from the server to have
permissions to create a table in the database. This is usually a privileged operation
that is often restricted to the DBA. There will need to be a creation phase or schema
generation to cause the resource to be created before the AUTO strategy can function.

For more information and examples, see Section 9.1.9 "GeneratedValue Annotation" of the JPA
Specification (http://jcp.org/en/jsr/detail 7id=220) .

Configuring Sequence Generation

Many databases support an internal mechanism for id generation called sequences. You can use a database
sequence to generate identifiers when the underlying database supports them.

For more information, see Table Sequencing.

@SequenceGenerator

26 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

27 of 186

If you use the @GeneratedValue annotation to specify a primary key generator of type SEQUENCE, then you
can use the @SequenceGenerator annotation to fine-tune this primary key generator to do the following:

m change the allocation size to match your application requirements or database performance
parameters;

m change the initial value to match an existing data model (for example, if you are building on an
existing data set for which a range of primary key values has already been assigned or reserved);

m use a predefined sequence in an existing data model.

The @SequenceGenerator annotation has the following attributes:

® name — The name of the generator must match the name of a Generatedvalue with its
strategy attribute set to SEQUENCE

You are required to specify the value of this attribute.
B allocationSize — By default, EclipseLink persistence provider uses an allocation size of 50.

The value of this attribute must match the increment size on the database sequence object. If this
allocation size does not match your application requirements or database performance parameters, set
this attribute to the int value you want.

You are not required to specify the value of the allocationSize attribute.
m initialValue — By default, EclipseLink persistence provider starts all primary key values from 0.
If this does not match an existing data model, set this attribute to the int value you want.

You are not required to specify the value of the initialvalue attribute.
®m sequenceName — By default, EclipseLink persistence provider assigns a sequence name of its own
creation.

The sequenceName defaults to the name of the SequenceGenerator. If you prefer to use an
existing or predefined sequence, set sequenceName to the String name you want.

You are not required to specify the value of the sequenceName attribute.

This example shows how to use this annotation to specify the allocation size for the SEQUENCE primary key
generator named Cust_Seq.

Usage of @SequenceGenerator

LI e i T I T i R S 1

@Entity
public class Employee implements Serializable {
@Id
@SequenceGenerator (name="Cust Seqg", allocationSize=25)
@GeneratorValue (strategy=SEQUENCE, generator="Cust Seq")
@Column (name="CUST ID")
public Long getId() {
return id;

}

For more information and examples, see Section 9.1.37 "SequenceGenerator Annotation” of the JPA
Specification (http://jcp.org/en/jsr/detail?1d=220) .

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

28 of 186

For more information on the EclipseLink artifacts configured by these JPA metadata, refer to Descriptors and
Sequencing.

@TableGenerator

If you use the @GeneratedValue annotation to specify a primary key generator of type TABLE, then you
can use the @TableGenerator annotation to fine-tune this primary key generator to do the following:

m change the name of the primary key generator's table, because the name is awkward, a reserved word,
incompatible with a preexisting data model, or invalid as a table name in your database;

m change the allocation size to match your application requirements or database performance
parameters;

m change the initial value to match an existing data model (for example, if you are building on an
existing data set, for which a range of primary key values has already been assigned or reserved);

m configure the primary key generator's table with a specific catalog or schema;

m configure a unique constraint on one or more columns of the primary key generator's table;

The @TableGenerator annotation has the following attributes:

® name — The name of the generator must match the name of a Generatedvalue with its
strategy attribute set to TABLE. The scope of the generator name is global to the persistence unit
(across all generator types).

You are required to specify the value of this attribute.

B allocationSize — By default, EclipseLink persistence provider uses an allocation size of 50.
If this allocation size does not match your application requirements or database performance
parameters, set this attribute to the int value you want.

You are not required to specify the value of the allocationSize attribute.

®m catalog — By default, EclipseLink persistence provider uses whatever the default catalog is for
your database.
If the default catalog is inappropriate for your application, set the value of this attribute to the
String catalog name to use.

You are not required to specify the value of the catalog attribute.
B initialValue — By default, EclipseLink persistence provider starts all primary key values from 0.
If this does not match an existing data model, set this attribute to the int value you want.

You are not required to specify the value of the initialvalue attribute.

® pkColumnName — By default, EclipseLink persistence provider supplies a name for the primary key
column in the generator table: "SEQ NAME".
If this name is inappropriate for your application, set the value of this attribute to the St ring name
you want.

You are not required to specify the value of the pkColumnName attribute.

m pkColumnValue — By default, EclipseLink persistence provider supplies a suitable primary key
value for the primary key column in the generator table: TableGenereator.name.
If this value is inappropriate for your application, set the value of this attribute to the String value
you want.

You are not required to specify the value of the pkColumnVvalue attribute.

m schema — By default, EclipseLink persistence provider uses whatever the default schema is for your
database.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

29 of 186

If this value is inappropriate for your application, set the value of this attribute to the St ring schema
name you choose.

You are not required to specify the value of the schema attribute.

®m table — By default, EclipseLink persistence provider supplies a suitable name for the table that
stores the generated id values: "SEQUENCE".
If this value is inappropriate for your application, set the value of this attribute to the St ring table
name you want.

You are not required to specify the value of the table attribute.

m uniqueConstraints — By default, EclipseLink persistence provider assumes that none of the
columns in the primary key generator table have unique constraints.
If unique constraints do apply to one or more columns in this table, set the value of this attribute to an
array of one or more UniqueConstraint instances. For more information, see Section 9.1.4
"UniqueConstraint Annotation" of the JPA Specification (http://jcp.org/en/jsr/detail71d=220) .

You are not required to specify the value of the uniqueConstraints attribute.

® valueColumnName — By default, EclipseLink persistence provider supplies a suitable name for the
column that stores the generated id values: "SEQ COUNT".
If the default column name is inappropriate for your application, set the value of this attribute to the
String column name you want.

You are not required to specify the value of the valueColumnName attribute.

The Usage of @TableGenerator example shows how to use this annotation to specify the allocation size for
the TABLE primary key generator named Emp_Gen.

Usage of @TableGenerator

I i i i I T T I I I 1

@Entity
public class Employee implements Serializable {
@Id
@TableGenerator (name="Emp Gen", allocationSize=l)
@GeneratorValue (strategy=TABLE, generator="Emp Gen")
@Column (name="CUST ID")
public Long getId() {
return id;

}

Every table that you use for id generation should have two columns — if there are more columns, only two
will be used. The first column is of a string type and is used to identify the particular generator sequence. It
is the primary key for all of the generators in the table. The name of this column is specified by the
pkColumnName attribute. The second column is of an integer type and stores the actual id sequence that is
being generated. The value stored in this column is the last identifier that was allocated in the sequence. The
name of this column is specified by the valueColumnName attribute.

Each defined generator represents a row in the table. The name of the generator becomes the value stored in
the pkColumnName column for that row and is used by EclipseLink persistence provider to look up the
generator to obtain its last allocated value.

For more information and examples, see Section 9.1.38 "TableGenerator Annotation" of the JPA
Specification (http://jcp.org/en/jsr/detail ?7id=220) .

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Configuring Locking

You have the choice between optimistic and pessimistic locking. We recommend using EclipseLink
optimistic locking. For more information, see Locking.

By default, EclipseLink persistence provider assumes that the application is responsible for data consistency.

Use the @Version annotation to enable the JPA-managed optimistic locking by specifying the version field
or property of an entity class that serves as its optimistic lock value (recommended).

When choosing a version field or property, ensure that the following is true:

m there is only one version field or property per entity;

m you choose a property or field persisted to the primary table (see Section 9.1.1 "Table Annotation" of
the JPA Specification (http://jcp.org/en/jsr/detail7id=220));

m your application does not modify the version property or field.

Note: The field or property type must either be a numeric type (such as Number,
long, int, BigDecimal, and so on), or a java.sqgl.Timestamp. We
recommend using a numeric type.

The @Version annotation does not have attributes.

The Usage of @Version Annotation example shows how to use this annotation to specify property
getVersionNum as the optimistic lock value. In this example, the column name for this property is set to
OPTLOCK (see Section 9.1.5 "Column Annotation" of the JPA Specification (http://jcp.org/en/jsr
/detail?id=220)) instead of the default column name for the property.

Usage of @Version Annotation

\@Entity

1 public class Employee implements Serializable {
@Version

@Column (name="OPTLOCK")

protected int getVersionNum() {
return versionNum;

The @Version annotation supports the use of EclipseLink converters (see Using EclipseLink JPA
Converters).

For more information, see the following:
m Section 3.4 "Optimistic Locking and Concurrency" of the JPA Specification (http://jcp.org/en/jsr
/detail?1d=220)

m Section 9.1.17 "Version Annotation” of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)
m Using EclipseLink JPA Extensions for Optimistic Locking

30 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

31 of 186

For more information on the EclipseLink artifacts configured by these JPA metadata, refer to Descriptors and
Locking.

Declaring Basic Property Mappings

Simple Java types are mapped as part of the immediate state of an entity in its fields or properties. Mappings
of simple Java types are called basic mappings.

By default, EclipseLink persistence provider automatically configures a basic mapping for simple types.
Use the following annotations to fine-tune how your database implements these mappings:

= (@Basic

= (@Enumerated

= (@Temporal

= @Lob

m @Transient

For more information, see Using EclipseLink JPA Converters.

@Basic

By default, EclipseLink persistence provider automatically configures @Basic mapping for most Java
primitive types, wrappers of the primitive types, and enumerated types.

EclipseLink uses the default column name format of <field-name> or <property-name> in uppercase
characters.

You may explicitly place an optional @Basic annotation on a field or property to explicitly mark it as
persistent.

Note: The @Basic annotation is mostly for documentation purposes — it is not
required for the field or property to be persistent.

Use the @Basic annotation to do the following:

= configure the fetch type to LAZY;
m configure the mapping to forbid null values (for nonprimitive types) in case null values are
inappropriate for your application.

The @Basic annotation has the following attributes:

m fetch — By default, EclipseLink persistence provider uses a fetch type of
javax.persitence.FetchType.EAGER: data must be eagerly fetched.If the default is
inappropriate for your application or a particular persistent field, set fetch to FetchType .LAZY:
this is a hint to the persistence provider that data should be fetched lazily when it is first accessed (if
possible).You are not required to specify the value of this attribute.

For more information, see What You May Need to Know About EclipseLink JPA Lazy Loading.
®m optional — By default, EclipseLink persistence provider assumes that the value of all

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

(nonprimitive) fields and properties may be null.
If the default is inappropriate for your application, set this the value of this attribute to false.

You are not required to specify the value of this attribute.

This example shows how to use this annotation to specify a fetch type of LAZY for a basic mapping.

Usage of the @Basic Annotation

\@Entity
public class Employee implements Serializable {

@Basic (fetch=LAZY)
protected String getName () {
return name;

For more information and examples, see Section 9.1.18 "Basic Annotation" of the JPA Specification
(http://jcp.org/en/jsr/detail ?7id=220) .

For more information on EclipseLink direct mappings and relationship mappings, see Relational Mapping
Types.

@Enumerated

By default, EclipseLink persistence provider persists the ordinal values of enumerated constants.

Use the @Enumerated annotation to specify whether EclipseLink persistence provider should persist
ordinal or String values of enumerated constants if the St ring value suits your application requirements,
or to match an existing database schema:

You can use this annotation with the (@Basic annotation.
The @Enumerated annotation has the following attributes:

® value — By default, EclipseLink persistence provider assumes that for a property or field mapped to
an enumerated constant, the ordinal value should be persisted. In the Usage of the @Enumerated
Annotation example, the ordinal value of EmployeeStatus is written to the database when
Employee is persisted.
If you want the String value of the enumerated constant persisted, set value to
EnumType.STRING.

You are not required to specify the value of this attribute.

Given the enumerated constants in the Enumerated Constants example, the Usage of the (@Enumerated
Annotation example shows how to use the @Enumerated annotation to specify that the String value of
SalaryRate should be written to the database when Employee is persisted. By default, the ordinal value
of EmployeeStatus is written to the database.

32 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Enumerated Constants

1
public enum EmployeeStatus {FULL TIME, PART TIME, CONTRACT} .
. public enum SalaryRate {JUNIOR, SENIOR, MANAGER, EXECUTIVE} .
! 1

:@Entity
public class Employee implements Serializable/{

public EmployeeStatus getStatus () {

}

@Enumerated (STRING)
public SalaryRate getRate () {

For more information and examples, see Section 9.1.21 "Enumerated Annotation" of the JPA Specification
(http://jcp.org/en/jsr/detail 7id=220) .

@Temporal

Use the @Temporal annotation to specify the database type that EclipseLink persistence provider should
persist for persistent fields or properties of type java.util.Date and java.util.Calendar only.

You can use this annotation with the @Basic annotation.
The @Temporal annotation has the following attributes:

m value — Set this attribute to the TemporalType that corresponds to database type you want
EclipseLink persistence provider to use:
m DATE — equivalent of java.sgl.Date
®m TIME — equivalent of java.time.Date
m TIMESTAMP — equivalent of java.sqgl.Timestamp

You are required to specify the value of this attribute.

This example shows how to use this annotation to specify that EclipseLink persistence provider should
persist java.util.Date field startDate as a DATE (java.sql.Date) database type.

Usage of the @Temporal Annotation

33 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

@Entity
public class Employee implements Serializable/{

1

1

1

1

! “ o o

1

' @Temporal (DATE)

1 protected java.util.Date startDate;
1
|
1
1

For more information and examples, see Section 9.1.20 "Temporal Annotation" of the JPA Specification
(http://jcp.org/en/jsr/detail 7id=220) .

@Lob

By default, EclipseLink persistence provider assumes that all persistent data can be represented as typical
database data types.

Use the @L.ob annotation with the @Basic mapping to specify that a persistent property or field should be
persisted as a large object to a database-supported large object type.

A Lob may be either a binary or character type. The persistence provider infers the Lob type from the type
of the persistent field or property.

For String and character-based types, the default is C1ob. In all other cases, the default is B1ob.

You can also use the @Column attribute columnDefinition (see Section 9.1.5 "Column Annotation" of
the JPA Specification (http://jcp.org/en/jsr/detail?id=220)) to further refine the Lob type.

The @Lob annotation does not have attributes.

This example shows how to use this @L.ob annotation to specify that persistent field pic should be persisted
as aBlob.

Usage of the @Lob Annotation

\@Entity

, public class Employee implements Serializable {
@Lob

@Basic (fetch=LAZY)

@Column (name="EMP PIC", columnDefinition="BLOB NOT NULL")
protected byte[] pic;

For more information and examples, see Section 9.1.20 "Temporal Annotation" of the JPA Specification
(http://jcp.org/en/jsr/detail 2id=220) .

@Transient

34 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

By default, EclipseLink persistence provider assumes that all the fields of an entity are persistent.

Use the @Transient annotation to specify a field or property of an entity that is not persistent (for
example, a field or property that is used at run time, but that is not part of the entity's state).

EclipseLink persistence provider will not persist (or create database schema) for a property or field
annotated with @Transient.

This annotation can be used with @Ent ity (see Section 8.1 "Entity" of the JPA Specification (http://jcp.org
/en/jst/detail?id=220)), @MappedSuperclass), and @Embeddable.

The @Transient annotation does not have attributes.

The Usage of the @Transient Annotation example shows how to use the @Transient annotation to specify

Employee field currentSession as not persistent. EclipseLink persistence provider will not persist this
field.

Usage of the @Transient Annotation

@Entity

i public class Employee implements Serializable {
@Id

int id;

@Transient
Session currentSession;

For more information and examples, see Section 9.1.16 "Transient Annotation" of the JPA Specification
(http://jcp.org/en/jsr/detail ?7id=220) .

Mapping Relationships
EclipseLink persistence provider requires that you map relationships explicitly.

Use the following annotations to specify the type and characteristics of entity relationships to fine-tune how
your database implements these relationships:

B @OneToOne

= @ManyToOne
= @OneToMany
= @ManyToMany
= (@MapKey

= (@MapKey

At end of relationships section should link to the EclipseLink relationships mappings section and state that
additional advanced mapping and mapping options are available through EclipseLink's descriptor and

mapping API through using a DescriptorCustomizer.

For more information, see Relational Mapping Types.

35 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

36 of 186

You can access additional advanced mappings and mapping options through EclipseLink descriptor and
mapping API using a DescriptorCustomizer Class.

@OneToOne

By default, JPA automatically defines a OneToOne mapping for a single-valued association to another
entity that has one-to-one multiplicity and infers the associated target entity from the type of the object being
referenced.

Use the OneToOne annotation to do the following:

m configure the fetch type to LAZY;

m configure the mapping to forbid null values (for nonprimitive types) in case null values are
inappropriate for your application;

m configure the associated target entity, if it cannot be inferred from the type of the object being
referenced;

m configure the operations that must be cascaded to the target of the association (for example, if the
owning entity is removed, ensure that the target of the association is also removed).

The @OneToOne annotation has the following attributes:

®m cascade — By default, JPA does not cascade any persistence operations to the target of the
association. Thus, the default value of this attribute is an empty
javax.persitence.CascadeType array.
If you want some or all persistence operations cascaded to the target of the association, set the value
of this attribute to one or more CascadeType instances, including the following:
m ALL — Any persistence operation performed on the owning entity is cascaded to the target of
the association.
MERGE — If the owning entity is merged, the merge is cascaded to the target of the association.
PERSIST — If the owning entity is persisted, the persist is cascaded target of the association.
REFRESH — If the owning entity is refreshed, the refresh is cascaded target of the association.
REMOVE — If the owning entity is removed, the target of the association is also removed.

You are not required to provide value for this attribute.

m fetch — By default, EclipseLink persistence provider uses a fetch type of
javax.persitence.FetchType.EAGER: this is a requirement on the persistence provider
runtime that data must be eagerly fetched.If the default is inappropriate for your application or a
particular persistent field, set fetch to FetchType .LAZY: this is a hint to the persistence provider
that data should be fetched lazily when it is first accessed (if possible). We recommend using the
FetchType.LAZY on all relationships.

You are not required to provide value for this attribute.
For more information, see What You May Need to Know About EclipseLink JPA Lazy Loading.

® mappedBy — By default, EclipseLink persistence provider infers the associated target entity from the
type of the object being referenced.

Use the mappedBy attribute if the relationship is bidirectional and the target entity has an inverse
one-to-one relationship that has already been mapped. You can only use mappedBy on the side of the
relationship that does not define the foreign key in its table. This is the only way in JPA to define a
target foreign key relationship. For example, if the foreign key for the one-to-one is in the target
entity's table, you must define the one-to-one mapping on both sides of the relationship and use the
mappedBy on the target foreign key side. For more information on target foreign keys, see
One-to-One Mapping.

You are not required to specify the value of this attribute.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

® optional — By default, EclipseLink persistence provider assumes that the value of all
(nonprimitive) fields and properties may be null.

The default value of this attribute is true.
If the default is inappropriate for your application, set value of this attribute to false.

You are not required to specify the value of this attribute.

B targetEntity — By default, EclipseLink persistence provider infers the associated target entity
from the type of the object being referenced.
If the persistence provider cannot infer the type of the target entity, then set the targetEntity
element on owning side of the association to the Class of the entity that is the target of the
relationship.

You are not required to specify the value of this attribute.

The Usage of @OneToOne Annotation - Customer Class and Usage of (@OneToOne Annotation -
CustomerRecord Class examples show how to use this annotation to configure a one-to-one mapping between
Customer (the owning side) and CustomerRecord (the owned side).

Usage of @OneToOne Annotation - Customer Class

\@Entity
public class Customer implements Serializable {

1
1
! .« o .
1

! @OneToOne (optional=false)

' @JoinColumn (name="CUSTREC ID", unique=true, nullable=false, updatable=fals
' public CustomerRecord getCustomerRecord() {

! return customerRecord;

1

1

1

1

1

1

Note: You have to provide a @JoinColumn (see Section 9.1.6 "JoinColumn
Annotation" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)) for a
@OneToOne defining the foreign key. Otherwise, the foreign key will be assumed to
be the <source-field-name> <target-primary-key-column> or
<source-property-name> <target-primary-key-column>.

Use either a @JoinColumn or a @JoinTable (see Section 9.1.25 "JoinTable Annotation" of the JPA
Specification (http://jcp.org/en/jsr/detail?id=220)) with the mapping; if you do not specify any of them,
EclipseLink will default to @JoinTable with the join table name format of <source-table-
name> <target-table-name> inuppercase characters, and with columns format of <source-
entity-alias> <source-primary-key-column>, <source-field-name> <target-
primary-key-column> (or <source-property-name> <target-primary-key-column>) in uppercase
characters.

Usage of @OneToOne Annotation - CustomerRecord Class

37 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

38 of 186

@Entity

public class CustomerRecord implements Serializable {

1

1

1

:

! @OneToOne (optional=false, mappedBy="customerRecord")
' public Customer getCustomer () {
1

1

1

1

return customer;

For more information and examples, see Section 9.1.23 "OneToOne Annotation" of the JPA Specification
(http://jcp.org/en/jsr/detail 7id=220) .

For more information on EclipseLink direct mappings and relationship mappings, see Relational Mapping

Types.

For more information, see One-to-One Mapping and Configuring a Relational One-to-One Mapping.

@ManyToOne

By default, JPA automatically defines a ManyToOne mapping for a single-valued association to another
entity class that has many-to-one multiplicity.

Use the ManyToOne annotation to do the following:

m configure the fetch type to LAZY;

m configure the mapping to forbid null values (for nonprimitive types) in case null values are
inappropriate for your application;

= configure the associated target entity, if it cannot be inferred from the type of the object being
referenced;

m configure the operations that must be cascaded to the target of the association (for example, if the
owning entity is removed, ensure that the target of the association is also removed).

The @ManyToOne annotation has the following attributes:

®m cascade — By default, JPA does not cascade any persistence operations to the target of the
association. Thus, the default value of this attribute is an empty
javax.persistence.CascadeType array.
If you want some or all persistence operations cascaded to the target of the association, set the value
of this attribute to one or more CascadeType instances, including the following:

ALL — Any persistence operation performed on the owning entity is cascaded to the target of
the association.

MERGE — If the owning entity is merged, the merge is cascaded to the target of the association.
PERSIST — If the owning entity is persisted, the persist is cascaded target of the association.
REFRESH — If the owning entity is refreshed, the refresh is cascaded target of the association.
REMOVE — If the owning entity is removed, the target of the association is also removed.

You are not required to provide value for this attribute.

m fetch — By default, EclipseLink persistence provider uses a fetch type of
javax.persitence.FetchType . EAGER: this is a requirement on the persistence provider runtime that
data must be eagerly fetched.

If the default is inappropriate for your application or a particular persistent field, set fetch to

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

FetchType.LAZY: this is a hint to the persistence provider that data should be fetched lazily when
it is first accessed (if possible).

You are not required to provide value for this attribute.

For more information, see What You May Need to Know About EclipseLink JPA Lazy Loading.
m optional — By default, EclipseLink persistence provider assumes that the value of all

(nonprimitive) fields and properties may be null.

The default value of this attribute is true.
If the default is inappropriate for your application, set value of this attribute to false.

You are not required to specify the value of this attribute.

®m targetEntity — By default, EclipseLink persistence provider infers the associated target entity
from the type of the object being referenced.
If the persistence provider cannot infer the type of the target entity, then set the targetEntity
element on owning side of the association to the Class of the entity that is the target of the
relationship.

You are not required to specify the value of this attribute.

This example shows how to use this annotation to configure a many-to-one mapping between Customer
(the owned side) and Order (the owning side) using generics.

Usage of @ManyToOne Annotation

@Entity
public class Order implements Serializable {

I
1
1
:
E @ManyToOne (optional=false)

' @JoinColumn (name="CUST ID", nullable=false, updatable=false)
! public Customer getCustomer () {

E return customer;

1

1

1

Note: You have to provide a @JoinColumn (see Section 9.1.6 "JoinColumn
Annotation" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)) for a
@ManyToOne defining the foreign key. Otherwise, the foreign key will be assumed to
be the <source-field-name> <target-primary-key-column> or
<source-property-name>_ <target-primary-key-column>.

Use either a @JoinColumn or a @JoinTable (see Section 9.1.25 "JoinTable Annotation" of the JPA
Specification (http://jcp.org/en/jsr/detail?id=220)) with the mapping; if you do not specify any of them,
EclipseLink will default to @ JoinTable with the join table name format of <source-table-
name> <target-table-name> inuppercase characters, and with columns format of <source-
entity-alias> <source-primary-key-column>, <source-field-name> <target-
primary-key-column> (or <source-property-name> <target-primary-key-column>) in uppercase

39 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

40 of 186

characters.

For more information and examples, see Section 9.1.22 "ManyToOne Annotation" of the JPA Specification
(http://jep.org/en/jsr/detail?1d=220) .

For more information on EclipseLink direct mappings and relationship mappings, see Relational Mapping
Types.

@OneToMany

By default, JPA automatically defines a OneToMany mapping for a many-valued association with
one-to-many multiplicity.

Use the OneToMany annotation to do the following:

= configure the fetch type to EAGER;

m configure the associated target entity, because the Collection used is not defined using generics;

m configure the operations that must be cascaded to the target of the association: for example, if the
owning entity is removed, ensure that the target of the association is also removed;

= configure the details of the join table used by the persistence provider for unidirectional one-to-many
relationships (see Section 9.1.25 "JoinTable Annotation" of the JPA Specification (http://jcp.org/en/jsr
/detail?id=220)).

The @OneToMany annotation has the following attributes:

®m cascade — By default, JPA does not cascade any persistence operations to the target of the
association. Thus, the default value of this attribute is an empty
javax.persitence.CascadeType array.
If you want some or all persistence operations cascaded to the target of the association, set the value
of this attribute to one or more CascadeType instances, including the following:
®m ALL — Any persistence operation performed on the owning entity is cascaded to the target of
the association.
MERGE — If the owning entity is merged, the merge is cascaded to the target of the association.
PERSIST — If the owning entity is persisted, the persist is cascaded target of the association.
REFRESH — If the owning entity is refreshed, the refresh is cascaded target of the association.
REMOVE — If the owning entity is removed, the target of the association is also removed.

You are not required to provide value for this attribute.

m fetch — By default, EclipseLink persistence provider uses a fetch type of
javax.persitence.FetchType . LAZY: this is a hint to the persistence provider that data should be
fetched lazily when it is first accessed (if possible).

If the default is inappropriate for your application or a particular persistent field, set fetch to
FetchType .EAGER: this is a requirement on the persistence provider runtime that data must be
eagerly fetched.

You are not required to provide value for this attribute.
For more information, see What You May Need to Know About EclipseLink JPA Lazy Loading.

® mappedBy — By default, if the relationship is unidirectional, EclipseLink persistence provider
determines the field that owns the relationship.
If the relationship is bidirectional, then set the mappedBy element on the inverse (non-owning) side of
the association to the name of the field or property that owns the relationship, as the Usage of
@ManyToOne Annotation - Order Class with Generics example shows.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

You are not required to specify the value of this attribute.

®m targetEntity — By default, if you are using a Collection defined using generics, then the
persistence provider infers the associated target entity from the type of the object being referenced.
Thus, the default is the parameterized type of the Collection when defined using generics.
If your Collection does not use generics, then you must specify the entity class that is the target of
the association: set the targetEntity element on owning side of the association to the Class of
the entity that is the target of the relationship.

You are not required to specify the value of this attribute.

The Usage of @OneToMany Annotation - Customer Class with Generics and Usage of @ManyToOne
Annotation - Order Class with Generics examples show how to use this annotation to configure a
one-to-many mapping between Customer (the owned side) and Order (the owning side) using generics.

Usage of @OneToMany Annotation - Customer Class with Generics

\@Entity
! public class Customer implements Serializable {

1

1

! ce

! @OneToMany (cascade=ALL, mappedBy="customer")
' public Set<Order> getOrders () {

' return orders;
1

1

1

1

1

1

\@Entity
' public class Order implements Serializable {

@ManyToOne

@JoinColumn (name="CUST ID", nullable=false)
public Customer getCustomer () {

return customer;

For more information and examples, see Section 9.1.24 "OneToMany Annotation" of the JPA Specification
(http://jcp.org/en/jsr/detail 7id=220) .

For more information on EclipseLink direct mappings and relationship mappings, see Relational Mapping
Types.

For more information on EclipseLink one-to-one mappings, see One-to-Many Mapping, and for information
on how to configure these mappings, see Configuring a Relational One-to-Many Mapping.

@ManyToMany

By default, JPA automatically defines a ManyToMany mapping for a many-valued association with
many-to-many multiplicity.

41 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

42 of 186

Use the @ManyToMany annotation to do the following;

configure the fetch type to EAGER;

= configure the mapping to forbid null values (for nonprimitive types) in case null values are
inappropriate for your application;

m configure the associated target entity because the Collection used is not defined using generics;

m configure the operations that must be cascaded to the target of the association (for example, if the

owning entity is removed, ensure that the target of the association is also removed).

The @ManyToMany annotation has the following attributes:

m cascade — By default, JPA does not cascade any persistence operations to the target of the
association. Thus, the default value of this attribute is an empty
javax.persitence.CascadeType array.

If you want some or all persistence operations cascaded to the target of the association, set the value
of this attribute to one or more CascadeType instances, including the following:
® ALL — Any persistence operation performed on the owning entity is cascaded to the target of
the association.

MERGE — If the owning entity is merged, the merge is cascaded to the target of the association.

PERSIST — If the owning entity is persisted, the persist is cascaded target of the association.

REFRESH — If the owning entity is refreshed, the refresh is cascaded target of the association.

REMOVE — If the owning entity is removed, the target of the association is also removed.

You are not required to provide value for this attribute.

m fetch — By default, EclipseLink persistence provider uses a fetch type of
javax.persitence.FetchType.LAZY: this is a hint to the persistence provider that data
should be fetched lazily when it is first accessed (if possible).

If the default is inappropriate for your application or a particular persistent field, set fetch to
FetchType .EAGER: this is a requirement on the persistence provider runtime that data must be
eagerly fetched.

You are not required to provide value for this attribute.
For more information, see What You May Need to Know About EclipseLink JPA Lazy Loading.

® mappedBy — By default, if the relationship is unidirectional, EclipseLink persistence provider
determines the field that owns the relationship.
If the relationship is bidirectional, then set the mappedBy element on the inverse (non-owning) side of
the association to the name of the field or property that owns the relationship, as the Usage of
(@ManyToMany Annotation - Project Class with Generics example shows.

You are not required to specify the value of this attribute.

®m targetEntity — By default, if you are using a Collection defined using generics, then the
persistence provider infers the associated target entity from the type of the object being referenced.
Thus, the default is the parameterized type of the Collection when defined using generics.
If your Collection does not use generics, then you must specify the entity class that is the target of
the association: set the targetEntity element on owning side of the association to the Class of
the entity that is the target of the relationship.

You are not required to specify the value of this attribute.

The Usage of @ManyToMany Annotation - Employee Class with Generics and Usage of @ManyToMany
Annotation - Project Class with Generics examples show how to use this annotation to configure a
many-to-many mapping between Employee and Project using generics.

Usage of @ManyToMany Annotation - Employee Class with Generics

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

@Entity
public class Employee implements Serializable {
@Id
private int id;
private String name;
@ManyToMany
@JoinTable (name="EMP PROJ",
joinColumns=
@JoinColumn (name="EMP ID"),
inverseJoinColumns=
@JoinColumn (name="PROJ ID)
)

private Collection<Project> projects;

Note: Use a @JoinTable (see Section 9.1.25 "JoinTable Annotation" of the JPA
Specification (http://jcp.org/en/jsr/detail?id=220)) annotation to define a
many-to-many join table; if you do not specify this annotation, EclipseLink will
default to @QJoinTable with the join table name format of <source-table-
name> <target-table-name> inuppercase characters, and with columns
format of <source-entity-alias> <source-primary-key-column>,
<source-field-name> <target-primary-key-column> (or <source-
property-name>_ <target-primary-key-column>) in uppercase characters.

Usage of @ManyToMany Annotation - Project Class with Generics

\@Entity
, public class Project implements Serializable {

1

1

. ce

. @ManyToMany (mappedBy="projects")

! public Set<Employee> getEmployees () {
' return employees;
:

1

1

1

1

For more information and examples, see Section 9.1.26 "ManyToMany Annotation" of the JPA Specification
(http://jep.org/en/jsr/detail?1d=220) .

For more information on EclipseLink direct mappings and relationship mappings, see Relational Mapping
Types.

For more information on EclipseLink one-to-one mappings, see Many-to-Many Mapping, and for information
on how to configure these mappings, see Configuring a Relational Many-to-Many Mapping.

@MapKey

43 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

By default, EclipseLink persistence provider assumes that the primary key of the associated entity is the map
key for associations of type java.util.Map. If the primary key is a noncomposite primary key annotated
with the @Id annotation, an instance of this field or property's type is used as the map key.

Use the @MapKey annotation to specify the following:

= some other field or property as the map key if the primary key of the associated entity is not
appropriate for your application;
® an embedded composite primary key class (see @EmbeddedlId).

The field or property you specify must have a unique constraint (see Section 9.1.4 "UniqueConstraint
Annotation" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)).

The @MapKey annotation has the following attributes:

= name — By default, EclipseLink persistence provider uses the primary key of the associated entity as
the Map key for a property or field mapped to a java.util.Map for noncomposite primary keys,
or composite primary keys annotated with the @ TdC1ass annotation (see @IdClass).
If you want to use some other field or property as the map key, set name to the associated entity's
String field or property name to use.

You are not required to provide value for this attribute.

In the Project Entity Using @MapKey Annotation example, Project owns a one-to-many relationship to
instances of Employee as a Map. The Project Entity Using @MapKey Annotation example shows how to
use the @MapKey annotation to specify that the key for this Map is Employee field empPK, an embedded
composite primary key (see the Employee Entity example) of type EmployeePXK (see the Project Entity
Using @MapKey Annotation example).

Project Entity Using @MapKey Annotation

@Entity
. public class Project implements Serializable {

@OneToMany (mappedBy="project")
@MapKey (name="empPK")
public Map<EmployeePK, Employee> getEmployees () {

Employee Entity

44 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

1
'QEntity
public class Employee implements Serializable {

@EmbeddedId
public EmployeePK getEmpPK() {

}

@ManyToOne
@JoinColumn (name="proj id")
public Project getProject () {

@Embeddable
public class EmployeePk {

String name;
Date birthDate;

For more information and examples, see Section 9.1.27 "MapKey Annotation" of the JPA Specification
(http://jcp.org/en/jsr/detail 7id=220) .

@OrderBy

Use the @0rderBy annotation with @OneToMany and @ManyToMany to specify the following:

m one or more other field or property names to order by;
m different orders (ascending or descending) for each such field or property names.

The @OrderBy annotation has the following attributes:

® value — By default, EclipseLink persistence provider retrieves the members of an association in
ascending order by primary key of the associated entities.
If you want to order by some other fields or properties and specify different, set value to a comma-
separated list of the following elements: "property-or-field-name ASC|DESC" (see
Example 1-65).

You are not required to provide value for this attribute.

This example shows how to use the @OrderBy annotation to specify that the Project method
getEmployees should return a List of Employee in ascending order by Employee field lastname,
and in descending order by Employee field seniority.

Project Entity Using @OvrderBy Annotation

45 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

@Entity
public class Project implements Serializable {

@ManyToMany (mappedBy="project")
@O0rderBy ("lastname ASC, seniority DESC")
public List<Employee> getEmployees () {

For more information and examples, see Section 9.1.28 "OrderBy Annotation" of the JPA Specification
(http://jep.org/en/jsr/detail?1d=220) .

Mapping Inheritance

By default, EclipseLink persistence provider assumes that all persistent fields are defined by a single entity
class.

Use the following annotations if your entity class inherits some or all persistent fields from one or more
superclasses:

@Inheritance
@MappedSuperclass
@DiscriminatorColumn
(@DiscriminatorValue

For more information, see Section 2.1.9 "Inheritance" of the JPA Specification (http://jcp.org/en/jsr
/detail?id=220) .

You can access advanced inheritance options through EclipseLink descriptor API using a
DescriptorCustomizer class.

@Inheritance

By default, the EclipseLink persistence provider automatically manages the persistence of entities in an
inheritance hierarchy.

Use the @Inheritance annotation to customize the persistence provider's inheritance hierarchy support to
improve application performance or to match an existing data model.

The @Inheritance annotation has the following attributes:

®m strategy — By default, the EclipseLink persistence provider assumes that all the classes in a
hierarchy are mapped to a single table differentiated by the discriminator value (see
(@DiscriminatorValue) in the table's discriminator column (see @DiscriminatorColumn):
InheritanceType.SINGLE TABLE.

If this is not appropriate for your application or if you must match an existing data model, set
strategy to the desired InheritanceType enumerated type:
m SINGLE TABLE — all the classes in a hierarchy are mapped to a single table. The table has a
discriminator column (@DiscriminatorColumn) whose value (@DiscriminatorValue) identifies

46 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

47 of 186

the specific subclass to which the instance that is represented by the row belongs.

Note: This option provides the best support for both polymorphic
relationships between entities and queries that range over the class
hierarchy. The disadvantages of this option include the need to make
nullable columns that should be NOT NULL.

For more information, see Section 2.1.10.1 "Single Table per Class Hierarchy Strategy" of the
JPA Specification (http://jcp.org/en/jsr/detail?1d=220) .

» TABLE PER CLASS — each class is mapped to a separate table. All properties of the class,
including inherited properties, are mapped to columns of the table for the class.

Note: This option is available starting in EclipseLink Release 1.1. For
earlier versions, you can instead either map each entity subclass
independently, or use a @MappedSuperclass.

For more information, see Section 2.1.10.2 "Table per Concrete Class Strategy" of the JPA
Specification (http://jcp.org/en/jsr/detail ?7id=220) .

m JOINED - the root of the class hierarchy is represented by a single table and each subclass is
represented by a separate table. Each subclass table contains only those fields that are specific
to the subclass (not inherited from its superclass) and primary key columns that serve as
foreign keys to the primary keys of the superclass table.

For more information, see Section 2.1.10.3 "Joined Subclass Strategy" of the JPA Specification
(http://jep.org/en/jsr/detail?1d=220) .

You are not required to specify the value of this attribute.

This example shows how to use this annotation to specify that all subclasses of Customer will use
InheritanceType.JOINED. The subclass in the @heritance - Subclass Using JOINED example will
be mapped to its own table that contains a column for each the persistent properties of ValuedCustomer
and one foreign key column that contains the primary key to the Customer table.

@Inheritance - Root Class Using JOINED

import static javax.persistence.InheritanceType.JOINED;
! QEntity

@Inheritance (strategy=JOINED)

public class Customer implements Serializable {

@Id
private int customerId;

@Inheritance - Subclass Using JOINED

gy g g 4

1
:@Entity

1 public class ValuedCustomer extends Customer {
1

1

L mfE e fEEffffECEfmfCmEEErmrmCmEmr;r ;e e e ;e e ;e ;e e e e e e e e e e e e — - mm— - m—————————— = -

In the @Inheritance - Root Class Specifying its Discriminator Column example, by default,
InheritanceType.SINGLE TABLE applies to Customer and all its subclasses. In this example, the
default discriminator table column DTYPE (@DiscriminatorColumn) is specified as having a discriminator

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

type of INTEGER and the @DiscriminatorValue for Customer is specified as 1. The @Inheritance -
Subclass Specifying its Discriminator Value example shows how to specify the discriminator value for
subclass ValuedCustomer as 2. In this example, all the persistent properties of both Customer and
ValuedCustomer will be mapped to a single table.

@Inheritance - Root Class Specifying its Discriminator Column

1 1
'CEntity ,
! @DiscriminatorColumn (discriminatorType=DiscriminatorType.INTEGER) .
' @DiscriminatorValue (value="1") !
1 public class Customer implements Serializable { '
1
: :
1 1
1 1
1

1
\@Entity ;
@DiscriminatorValue (value="2") !
public class ValuedCustomer extends Customer ({ !
:
1
1
1

L mfE e fEEffffECEfmfCmEEErmrmCmEmr;r ;e e e ;e e ;e ;e e e e e e e e e e e e — - mm— - m—————————— = -

For more information, see the following sections of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)

m Section 2.1.9 "Inheritance"
= Section 2.1.10 "Inheritance Mapping Strategies"
m Section 9.1.29 "Inheritance Annotation"

@MappedSuperclass

By default, a EclipseLink persistence provider assumes that all the persistent fields of an entity are defined
in that entity.

The @MappedSuperclass annotation lets you define mappings in a nonpersistent abstract superclass and
enable their inheritance by the subclasses. You can use the @AttributeOverride and @AssociationOverride
annotations to override the mapping information in these subclasses.

Use the @MappedSuperclass annotation to designate a superclass from which your entity class inherits
persistent fields. This is a convenient pattern when multiple entity classes share common persistent fields or
properties.

You can annotate this superclass' fields and properties with any of the direct and relationship mapping
annotations (such as @Basic and @ManyToMany) as you would for an entity, but these mappings apply
only to its subclasses since no table exists for the superclass itself. The inherited persistent fields or
properties belong to the subclass' table.

The @MappedSuperclass annotation does not have any attributes.

This example shows how to use the @MappedSuperclass annotation to specify Employee as a mapped
superclass. The Extending a Mapped Superclass example shows how to extend this superclass in an entity
and how to use the @AttributeOverride annotation in the entity class to override configuration made in
the superclass.

48 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Usage of the @MappedSuperclass Annotation

:@MappedSuperclass
public class Employee implements Serializable {

@Id

protected Integer empId;
@Version

protected Integer version;

@ManyToOne
@JoinColumn (name="ADDR")
protected Address address;

\€Entity '
| @AttributeOverride (name="address", column=@Column (name="ADDR ID")) !
public class PartTimeEmployee extends Employee { !
@Column (name="WAGE") '
protected Float hourlyWage; !
1

1

1

a

For more information, see the following sections of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)

m Section 9.1.36 "MappedSuperclass Annotation”
m Section 2.1.9.2 "Mapped Superclasses"
m Section 2.1.10 "Inheritance Mapping Strategies"

@DiscriminatorColumn

By default, when @Inheritance attribute strategy is InheritanceType.SINGLE TABLE or JOINED,
EclipseLink persistence provider creates a discriminator column named DTYPE to differentiate classes in an
inheritance hierarchy.

Use the @DiscriminatorColumn annotation to do the following:

m specify a discriminator column name if the column name in your data model is not the default column
name DTYPE;

m specify a discriminator column length that is appropriate for your application or a preexisting data
model;

m fine-tune the characteristics of the discriminator column in your database.

The @DiscriminatorColumn annotation has the following attributes:
®m columnDefinition — By default, EclipseLink persistence provider creates a database table

column with minimal SQL: empty String.
If you want the column created with more specialized options, set the value of this attribute to the

49 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

SQL fragment that you want JPA to use when generating the DDL for the column.

You are not required to specify the value of this attribute.

®m discriminatorType — By default, EclipseLink persistence provider assumes that the
discriminator type is a String: DiscriminatorType.STRING.
If you want to use a different type, set the value of this attribute to DiscriminatorType.CHAR or
DiscriminatorType.INTEGER.

Your @DiscriminatorValue must conform to this type.

You are not required to specify the value of this attribute.

® length — By default, EclipseLink persistence provider assumes that the discriminator column has a
maximum length of 255 characters when used to hold a String value. Default value of this attribute
is 31.
If this column width is inappropriate for your application or database, set the length to the int value
appropriate for your database column.

Your @DiscriminatorValue must conform to this type.

You are not required to specify the value of this attribute.
® name — By default, EclipseLink persistence provider assumes that the discriminator column is named
"DTYPE".

To specify an alternative column name, set name to the String column name you want.

You are not required to specify the value of this attribute.

The @DiscriminatorColumn and (@DiscriminatorValue - Root Class example shows how to use this
annotation to specify a discriminator column named DISC of type STRING and length 20. In this example,
the @DiscriminatorValue for this class is specified as CUST. The subclass in the @DiscriminatorValue -
Subclass example specifies its own @DiscriminatorvValue of VIP. In both Customer and
ValuedCustomer, the value for @DiscriminatorValue must be convertible to the type specified by
@DiscriminatorColumn attribute discriminatorType and must conform to
@DiscriminatorColumn attribute length.

@DiscriminatorColumn and @DiscriminatorValue - Root Class

1

\@Entity

| @Table (name="CUST")

@Inheritance (strategy=SINGLE TABLE)

@DiscriminatorColumn (name="DISC", discriminatorType=STRING, length=20)
@DiscriminatorValue (value="CUST")

public class Customer implements Serializable {

1
:@Entity :
@DiscriminatorValue (value="VIP") !
public class ValuedCustomer extends Customer { !
:
1
1
1

1
1
1
1
1
1
1
1
1
i S gy -

50 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...
For more information, see the following sections of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)

m Section 9.1.30 "DiscriminatorColumn Annotation"
m Section 9.1.31 "DiscriminatorValue Annotation"
m Section 2.1.10 "Inheritance Mapping Strategies"

@DiscriminatorValue

By default, when @Inheritance attribute strategy is InheritanceType.SINGLE TABLE or
JOINED, EclipseLink persistence provider uses a @DiscriminatorColumn to differentiate classes in
the inheritance hierarchy by entity name (see Section 8.1 "Entity" of the JPA Specification (http://jcp.org
/en/jsr/detail?id=220)).

Use the @DiscriminatorValue annotation to specify the discriminator value used to differentiate an
entity in this inheritance hierarchy:

m if the entity name is inappropriate for this application;
® to match an existing database schema;

The @DiscriminatorValue annotation has the following attributes:

m value — Set value to the String equivalent of a discriminator value that conforms to the
@DiscriminatorColumn attributes discriminatorType and length.

You are required to specify the value of this attribute.

The @DiscriminatorColumn and @DiscriminatorValue - Root Class example shows how to use this
annotation to specify a discriminator column named DI SC of type STRING and length 20. In this example,
the @DiscriminatorValue for this class is specified as CUST. The subclass in the
@DiscriminatorValue - Subclass example specifies its own @DiscriminatorValue of VIP. In both
Customer and ValuedCustomer, the value for @DiscriminatorValue must be convertible to the
type specified by @DiscriminatorColumn attribute discriminatorType and must conform to
@DiscriminatorColumn attribute length.

@DiscriminatorColumn and @DiscriminatorValue - Root Class

1

\@Entity

' @Table (name="CUST")

@Inheritance (strategy=SINGLE TABLE)

@DiscriminatorColumn (name="DISC", discriminatorType=STRING, length=20)
@DiscriminatorValue (value="CUST")

public class Customer implements Serializable {

@DiscriminatorValue - Subclass

51 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

1
1
E@Entity !
' @DiscriminatorValue (value="VIP") ,
1 public class ValuedCustomer extends Customer { !
1

: :
1 1
: :

For more information, see the following sections of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)

m Section 9.1.30 "DiscriminatorColumn Annotation"
m Section 9.1.31 "DiscriminatorValue Annotation"
m Section 2.1.10 "Inheritance Mapping Strategies"

Using Embedded Objects

An embedded object does not have its own persistent identity — it is dependent upon an entity for its identity.
For more information, see Section 2.1.5 "Embeddable Classes" of the JPA Specification (http://jcp.org/en/jsr
/detail?id=220) .

By default, EclipseLink persistence provider assumes that every entity is mapped to its own table. Use the
following annotations to override this behavior for entities that are owned by other entities:

= @Embeddable

= @Embedded

= @AttributeOverride

® @AttributeOverrides

m @AssociationOverride
= (@AssociationOverrides

For information on EclipseLink aggregate descriptors, refer to Aggregate and Composite Descriptors in
Relational Projects; for aggregates advanced configuration options, refer to EclipseLink APL

@Embeddable

Use the @Embeddable annotation to specify a class whose instances are stored as an intrinsic part of an
owning entity and share the identity of the entity. Each of the persistent properties or fields of the embedded
object is mapped to the database table for the entity.

The REmbeddable annotation does not have attributes.

The Usage of the @Embeddable Annotation example shows how to use this annotation to specify that class
EmploymentPeriod may be embedded in an entity when used as the type for a persistent field annotated
as @Embedded (see theUsage of the @Embedded Annotation and @Embedded examples).

Usage of the @Embeddable Annotation

52 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

@Embeddable
public class EmploymentPeriod {

1

1

1

1

1

1

1 java.util.Date startDate;
1

1 java.util.Date endDate;
|

1

1

1

For more information, see Section 9.1.34 "Embeddable Annotation" of the JPA Specification (http://jcp.org
/en/jsr/detail?id=220) .

@Embedded

Use the @Embedded annotation to specify a persistent field whose @Embeddable type can be stored as an
intrinsic part of the owning entity and share the identity of the entity. Each of the persistent properties or
fields of the embedded object is mapped to the database table for the owning entity.

You can use the @Embedded annotation in conjunction with @Embeddable to model a strict ownership
relationship so that if the owning object is removed, the owned object is also removed.

Embedded objects should not be mapped across more than one table.

By default, column definitions (see Section 9.1.5 "Column Annotation" of the JPA Specification
(http://jep.org/en/jsr/detail?id=220)) specified in the @Embeddable class apply to the @Embedded class.
If you want to override these column definitions, use the @AttributeOverride annotation.

The REmbedded annotation does not have attributes.

The Usage of the @Embedded Annotation example shows how to use this annotation to specify that
@Embeddable class EmploymentPeriod (see the Usage of the @Embeddable Annotation) example
may be embedded in the entity class using the specified attribute overrides (@AttributeOverride). If you do
not need attribute overrides, you can omit the @Embedded annotation entirely: EclipseLink persistence
provider will infer that EmploymentPeriod is embedded from its @Embeddable annotation.

Usage of the @Embedded Annotation

public class Employee implements Serializable {

@Embedded

@AttributeOverrides ({
@AttributeOverride (name="startDate", column=@Column (name="EMP START")),

1
1
1
1
1
1
1
1
1
1
! @AttributeOverride (name="endDate", column=Q@Column (name="EMP END")) })
! public EmploymentPeriod getEmploymentPeriod() {

1

! .

1

1

1

1

1

1

For more information, see Section 9.1.35 "Embedded Annotation" of the JPA Specification (http://jcp.org
/en/jsr/detail71d=220) .

53 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

@AttributeOverride

By default, EclipseLink persistence provider automatically assumes that a subclass inherits both persistent
properties and their basic mappings from the superclass.

Use the @AttributeOverride annotation to customize a basic mapping inherited from a
@MappedSuperclass or @Embeddable to change the @Column (see Section 9.1.5 "Column Annotation" of
the JPA Specification (http://jcp.org/en/jsr/detail?id=220)) associated with the field or property if the
inherited column definition is incorrect for your entity (for example, if the inherited column name is
incompatible with a preexisting data model, or invalid as a column name in your database).

If you have more than one @AttributeOverride change to make, you must use the
@AttributeOverrides annotation.

To customize an association mapping to change its @JoinColumn (see Section 9.1.6 "JoinColumn
Annotation" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)), use the @AssociationOverride
annotation.

The @AttributeOverride annotation has the following attributes:

m column — The @Column that is being mapped to the persistent attribute. The mapping type will
remain the same as is defined in the embeddable class or mapped superclass.

You are required to specify the value of this attribute.
®m name — The name of the property in the embedded object that is being mapped if property-based
access is being used, or the name of the field if field-based access is used.

You are required to specify the value of this attribute.

The Usage of the @MappedSuperclass Annotation example shows a @MappedSuperclass that the entity
in the Usage of the @AttributeOverride Annotation example extends. The Usage of the @AttributeOverride
Annotation example shows how to use @AttributeOverride in the entity subclass to override the
@Column defined (by default) in the @MappedSuperclass Employee for the basic mapping to
Address.

With the @AttributeOverride, the Employee table contains the following columns:

ID

VERSION
ADDR STRING
WAGE

Without the @AttributeOverride, the Employee table contains the following columns:

ID
VERSION
ADDRESS
WAGE

Usage of the @MappedSuperclass Annotation

54 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

\@MappedSuperclass
' public class Employee {

@Id

protected Integer id;
@Version

protected Integer version;
protected String address;

\@Entity
| @AttributeOverride (name="address", column=@Column (name="ADDR STRING"))
public class PartTimeEmployee extends Employee {

@Column (name="WAGE")
protected Float hourlyWage;

For more information, see Section 9.1.10 "AttributeOverride Annotation" of the JPA Specification
(http://jcp.org/en/jsr/detail 7id=220) .

@AttributeOverrides

If you need to specify more than one @AttributeOverride, you must specify all your attribute overrides using
a single @AttributeOverrides annotation.

The @AttributeOverrides annotation has the following attributes:

m value — To specify two or more attribute overrides, set value to an array of
AttributeOverride instances.

You are required to specify the value of this attribute.

This example shows how to use this annotation to specify two attribute overrides.

Usage of the @AttributeOverrides Annotation

55 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

:@Entity

@QAttributeOverrides ({
@AttributeOverride (name="address", column=@Column (name="ADDR ID")),
@QAttributeOverride (name="1id", column=@Column (name="PTID"))

})

public class PartTimeEmployee extends Employee {

@Column (name="WAGE")
protected Float hourlyWage;

public PartTimeEmployee () {

}

public Float getHourlyWage () {

}

public void setHourlyWage (Float wage) {

For more information, see Section 9.1.11 "AttributeOverrides Annotation" of the JPA Specification
(http://jcp.org/en/jsr/detail 7id=220) .

@AssociationOverride

By default, EclipseLink persistence provider automatically assumes that a subclass inherits both persistent
properties and their association mappings from the superclass.

Use the @AssociationOverride annotation to customize an @OneToOne or @ManyToOne mapping
inherited from a @MappedSuperclass (see @MappedSuperclass) or @Embeddable to change the
@JoinColumn (see Section 9.1.6 "JoinColumn Annotation" of the JPA Specification (http:/jcp.org/en/jsr
/detail?id=220)) associated with the field or property if the inherited column definition is incorrect for your
entity (for example, if the inherited column name is incompatible with a preexisting data model, or invalid as
a column name in your database).

If you have more than one @AssociationOverride change to make, you must use the
@AssociationOverrides annotation.

To customize an association mapping to change its @Column (see Section 9.1.5 "Column Annotation” of the
JPA Specification (http://jcp.org/en/jst/detail7id=220)), use the @At tributeOverride annotation.

The @AssociationOverride annotation has the following attributes:
® joinColumns — To specify the join columns that are being mapped to the persistent attribute, set
the JoinColumns to an array of JoinColumn instances (see Section 9.1.6 "JoinColumn
Annotation" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)).

The mapping type will remain the same as is defined in the embeddable class or mapped superclass.

You are required to specify the value of this attribute.

56 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

® name — The name of the property in the embedded object that is being mapped if property-based
access is being used, or the name of the field if field-based access is used.

You are required to specify the value of this attribute.

The Usage of the @MappedSuperclass Annotation example shows a @MappedSuperclass that the entity in
the Usage of the @AssociationOverride Annotation example extends. The Usage of the
@AssociationOverride Annotation example shows how to use @AssociationOverride inthe entity
subclass to override the @ JoinColumn defined (by default) in the @MappedSuperclass Employee for
the association to Address.

With the @AssociationOverride, the Employee table contains the following columns:

ID
VERSION
ADDR ID
WAGE

Without the @AssociationOverride, the Employee table contains the following columns:

ID
VERSION
ADDRESS
WAGE

Usage of the @MappedSuperclass Annotation

\@MappedSuperclass
, public class Employee {

1
1
1
eId :
protected Integer id; |
@Version .
protected Integer version; .
@ManyToOne .
protected Address address; X

1

1

1

\@Entity

| @AssociationOverride (name="address", joinColumns=@JoinColumn (name="ADDR ID"))
public class PartTimeEmployee extends Employee {

@Column (name="WAGE")
protected Float hourlyWage;

For more information, see Section 9.1.12 "AssociationOverride Annotation" of the JPA Specification
(http://jep.org/en/jsr/detail?1d=220) .

57 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

58 of 186

@AssociationOverrides

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

If you need to specify more than one @AssociationOverride, you must specify all your association overrides

using a single @AssociationOverrides annotation.

The @AssociationOverrides annotation has the following attributes:

m value — To specify two or more association overrides, set this attribute to an array of

AssocilationOverride instances.

You are required to specify the value of this attribute.
This example shows how to use this annotation to specify two association overrides.

Usage of the @AssociationOverrides Annotation

@Entity
@AssociationOverrides ({

})
public class PartTimeEmployee extends Employee {

@Column (name="WAGE")
protected Float hourlyWage;

@AssociationOverride (name="address", joinColumn=@JoinColumn (name="ADDR ID")
@AssociationOverride (name="phone", joinColumn=@JoinColumn (name="PHONE NUM")

For more information, see Section 9.1.13 "AssociationOverrides Annotation" of the JPA Specification

(http://jcp.org/en/jsr/detail 2id=220) .

Copyright Statement

Using EclipseLink JPA Extensions

The Java Persistence API (JPA), part of the Java Enterprise Edition 5 (Java EE 5) EJB 3.0
specification, greatly simplifies Java persistence and provides an object relational mapping

Related Topics

approach that allows you to declaratively define how to map Java objects to relational database tables in a
standard, portable way that works both inside a Java EE 5 application server and outside an EJB container in

a Java Standard Edition (Java SE) 5 application.

EclipseLink JPA provides extensions to what is defined in the JPA specification. These extensions come in
persistence unit properties, query hints, annotations, EclipseLink own XML metadata, and custom API.

This section explains where and how you use the extensions to customize JPA behavior to meet your

application requirements.
For more information, see the following:

m EclipseLink API Reference

m JSR-220 Enterprise JavaBeans v.3.0 (http://jcp.org/about]ava/communityprocess/pfd/jsr220/indexl)

Java Persistence API specification

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

m Java EE 5 SDK JPA Javadoc (http://java.sun.com/javaee/5/docs/api/index.html?javax/persistence

/package-summary.html)

Using EclipseLink JPA Extensions for Mapping

EclipseLink defines the following mapping metadata annotations (in addition to JPA-defined ones):

@BasicCollection
@BasicMap
@CollectionTable
@PrivateOwned
@JoinFetch
@Mutable
@Transformation
@ReadTransformer
@WriteTransformer
@QWriteTransformers
@VariableOneToOne

EclipseLink persistence provider searches mapping annotations in the following order:

@BasicCollection
@BasicMap
@EmbeddedId
@Embedded
@ManyToMany
@ManyToOne
@OneToMany
@OneToOne

EclipseLink persistence provider applies the first annotation that it finds; it ignores other mapping
annotations, if specified. In most cases, EclipseLink does not log warnings or throw exceptions for duplicate

or incompatible mapping annotations.

If EclipseLink persistence provider does not find any of the mapping annotations from the preceding list, it
applies the defaults defined by the JPA specification: not necessarily the @Basic annotation.

How to Use the @BasicCollection Annotation

You can use the @BasicCollection annotation to map an
org.eclipse.persistence.mappings.DirectCollectionMapping, which stores a collection
of simple types, such as String, Number, Date, and so on, in a single table. The table must store the

value and the foreign key to the source object.

\@Target ({METHOD, FIELD})
IRRetention (RUNTIME)

:public @interface BasicCollection {
1 FetchType fetch() default LAZY;

: Column valueColumn () default @Column;

59 of 186

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Use the @BasicCollection annotation in conjunction witha @CollectionTable annotation. You can
also use it in conjunction with @Convert to modify the data value(s) during reading and writing of the
collection, as well as with the @ JoinFetch annotation.

This table lists attributes of the @BasicCollection annotation.

Attributes of the @BasicCollection Annotation

Required
or
Attribute Description Default Optional
fetch The javax.persistence.FetchType FetchType.LAZY optional
enumerated type that defines whether EclipseLink
should lazily load or eagerly fetch the value of
the field or property.
valueColumn |The name of the value column @ColumnNote: optional
(javax.persistence.Column) that holds |EclipseLink persistence
the direct collection data. provider sets the default to
the name of the field or
property.

Note: If you specify @BasicCollection on an attribute of type Map, EclipseLink
will throw an exception: the type must be Collection, Set or List. If you
specify the fetch type as LAZY, Collection implementation classes will also not be
valid.

This example shows how to use the @BasicCollection annotation to specify Employee field
responsibilities.

Usage of the @BasicCollection Annotation

60 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

1
\@Entity
' public class Employee implements Serializable/{

.
1
1
1
1
1
1
e !
@BasicCollection ('
fetch=FetchType.EAGER, '
valueColumn=0@Column (name="DESCRIPTION") '

) .
@CollectionTable (:
name="RESPONS", .
primaryKeyJoinColumns= .
{@PrimaryKeyJoinColumn (name="EMPLOYEE ID", referencedColumnName="EMP II

) 1
public Collection getResponsibilities() { E
return responsibilities; :

.

1

1

1

1

-

To further customize your mapping, use the DirectCollectionMapping APL

How to Use the @BasicMap Annotation

You can use the @BasicMap annotation to map an
org.eclipse.persistence.mappings.DirectMapMapping, which stores a collection of
key-value pairs of simple types, such as String, Number, Date, and so on, in a single table. The table
must store the value and the foreign key to the source object.

:@Target ({METHOD, FIELD})

\@Retention (RUNTIME)

public @interface BasicMap {

: FetchType fetch() default LAZY;

1 Column keyColumn () ;

: Convert keyConverter () default @Convert;

: Column valueColumn () default @Column;

f Convert valueConverter () default @Convert;
1
1

Use the @BasicMap annotation in conjunction witha @CollectionTable annotation, as well as with the
@JoinFetch annotation.

This table lists attributes of the @BasicMap annotation.

Required
or
Attribute Description Default Optional
fetch Set this attribute to the FetchType.LAZY optional
javax.persistence.FetchType
enumerated type to define whether
EclipseLink persistence provider has to lazily
load or eagerly fetch the value of the field or
property.
keyColumn Set this attribute to the name of the data <field-name> KEY or |optional
column (javax.persistence.Column) |<property-

61 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

62 of 186

that holds the direct map key.

name> KEY (in uppercase

characters)

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

keyConverter |Set this attribute to the key converter @Convert —an optional
(@Convert). equivalent of specifying
@Convert ("none")
resulting in no converter
added to the direct map
key.
valueColumn Set this attribute to the name of the value @Column optional
column (javax.persistence.Column) |Field or property.
that holds the direct collection data.
valueConverter|Set this attribute to the value converter @Convert —an optional

(@Convert).

equivalent of specifying
@Convert ("none")
resulting in no converter
added to the direct map
key.

Note: If you specify @BasicMap on an attribute of type Collection, EclipseLink
will throw an exception: the type must be Map. If you specify the fetch type as LAZY,
Map implementation classes are also not valid.

This example shows how to use the @BasicMap annotation to specify Employee field 1icenses.

Usage of the @BasicMap Annotation

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

1

\€Entity

! @Table (name="CMP3 EMPLOYEE")
@TypeConverter (

name="Integer2String",

dataType=Integer.class,

objectType=String.class
)

public class Employee implements Serializable(

@BasicMap (
fetch=FetchType.EAGER,
keyColumn=@Column (name="LICENSE"),

keyConverter=@Convert ("licenseConverter"),

valueColumn=@Column (name="STATUS"),

valueConverter=@Convert ("Integer2String")

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1)

1 .

' @0bjectTypeConverter (

. name="1licenseConverter",
. conversionValues={

: @ConversionValue (dataValue="AL",
! @ConversionValue (dataValue="FD",
' @ConversionValue (dataValue="5SM",
1 @ConversionValue (dataValue="SL",
1

1)

. @CollectionTable (

. name="LICENSE",

1
1
1
1
1
1
1
1
1
1
1
1
1
1

primaryKeyJoinColumns={(@PrimaryKeyJoinColumn (name="REST ID") }

)
public Map<String, String> getLicenses ()
return licenses;

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

objectValue="Alcohol License"),
objectValue="Food License"),
objectValue="Smoking License"),
objectValue="Site Licence")}

{

To further customize your mapping, use the Di rectMapMapping APL

How to Use the @CollectionTable Annotation

You can use the @CollectionTable annotation in conjunction with a @BasicCollection annotation
or the @BasicMap annotation. If you do not specify the @CollectionTable, EclipseLink persistence

provider will use the defaults.

:@Target ({METHOD, FIELD})

\@Retention (RUNTIME)

public @interface CollectionTable {

String name () default "";

String catalog() default "";

String schema () default "";
PrimaryKeyJoinColumn[] primaryKeyJoinColumns ()
UniqueConstraint[] uniqueConstraints () default {};

default {};

This table lists attributes of the @CollectionTable annotation.

Attribute Description

Default

63 of 186

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

64 of 186

name

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Set this attribute to the St ring name for your collection
table.

empty Stri
Note: Eclips
persistence |
the followin;
String as
name of the
" "+ the nai
relationship
of the source

catalog

Set this attribute to the String name of the table's catalog.

empty Stri
Note: Eclips
persistence |
default to th
unit's defaul

schema

Set this attribute to the St ring name of the table's schema.

empty Stri
Note: Eclips
persistence |
default to th
unit's defaul

primaryKeyJoinColumns

Set this attribute to an array of
javax.persistence.PrimaryKeyJoinColumn
instances to specify a primary key column that is used as a
foreign key to join to another table. If the source entity uses a
composite primary key, you must specify a primary key join
column for each field of the composite primary key. If the
source entity uses a single primary key, you may choose to
specify a primary key join column (optional). Otherwise,
EclipseLink persistence provider will apply the following
defaults:

m javax.persistence.PrimaryKeyJoinColumn
name — the same name as the primary key column of
the primary table of the source entity;

B javax.persistence.PrimaryKeyJoinColumn
referencedColumnName — the same name of the
primary key column of the primary table of the source
entity.

If the source entity uses a composite primary key and you
failed to specify the primary key join columns, EclipseLink
will throw an exception.

empty
PrimaryKzs
array

uniqueConstraints
This example shows how to use

responsibilities.

Set this attribute to an array of '
the $£0 1dees i ondabd crpimefation sypesy EfRiares i

that you want to place on the table. These constraints are only

empty
3@1iqueC01

used if table generation is in effect.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Usage of the @CollectionTable Annotation

1
\@Entity
. public class Employee implements Serializable({

.
1
1
1
1
1
1
.. !
@BasicCollection (!
fetch="1LAZY", !
valueColumn=@Column (name="DESCRIPTION") 1

1

) 1
@CollectionTable (.
name="RESPONS", .
primaryKeyJoinColumns= .
{@PrimaryKeyJoinColumn (name="EMPLOYEE ID", referencedColumnName="EMP II}

) '
public Collection getResponsibilities() { '
return responsibilities; !

'

1

1

1

1

-

How to Use the @PrivateOwned Annotation

Use the @PrivateOwned annotation in conjunction with a @OneToOne annotation, or a @OneToMany
annotation.

1

:@Target({METHOD, FIELD})
@Retention (RUNTIME)

:public @interface PrivateOwned {}

The @RPrivateOwned annotation does not have attributes.

This example shows how to use the @PrivateOwned annotation to specify Employee field
phoneNumbers.

Usage of the @PrivateOwned Annotation

@Entity
, public class Employee implements Serializable {

@OneToMany (cascade=ALL, mappedBy="employee")

@PrivateOwned

public Collection<PhoneNumber> getPhoneNumbers () {
return phoneNumbers;

What You May Need to Know About Private Ownership of Objects

When the referenced object is privately owned, the referenced child object cannot exist without the parent
object.

When you tell EclipseLink that a relationship is privately owned, you are specifying the following;

m [f the source of a privately owned relationship is deleted, then delete the target. Note that this is

65 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

66 of 186

equivalent of setting a cascade delete.
For more information, see the following:
m Optimistic Version Locking Policies and Cascading
m Section 3.2.2 "Removal" of the JPA Specification (http:/jcp.org/en/jsr/detail?id=220)
m Section 3.5.2 "Semantics of the Life Cycle Callback Methods for Entities" of the JPA
Specification (http://jcp.org/en/jsr/detail?1d=220)
Section 4.10 "Bulk Update and Delete Operations" of the JPA Specification (http://jcp.org
/en/jsr/detail 7id=220)
B @OneToOne
= @ManyToOne
B @OneToMany
= [f you remove the reference to a target from a source, then delete the target.

Do not configure privately owned relationships to objects that might be shared. An object should not be the
target in more than one relationship if it is the target in a privately owned relationship.

The exception to this rule is the case when you have a many-to-many relationship in which a relation object
is mapped to a relation table and is referenced through a one-to-many relationship by both the source and the
target. In this case, if the one-to-many mapping is configured as privately owned, then when you delete the
source, all the association objects will be deleted.

For more information, see How to Use the privateOwnedRelationship Attribute.

How to Use the @JoinFetch Annotation

You can specify the @ JoinFetch annotation for the following mappings:

® @0neToOne
@OneToMany
@ManyToOne
@ManyToMany
@BasicCollection
@BasicMap

1

@Target ({METHOD, FIELD})

\@Retention (RUNTIME)

:public @interface JoinFetch {

' JoinFetchType value() default JoinFetchType.INNER;

Using the @ JoinFetch annotation, you can enable the joining and reading of the related objects in the same
query as the source object.

Note: We recommend setting join fetching at the query level, as not all queries require
joining. For more information, see Using Join Reading with ObjectLevelReadQuery.

Alternatively, you can use batch reading, especially for collection relationships. For more information, see
Using Batch Reading.

This table lists attributes of the @ JoinFetch annotation.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

67 of 186

Attribute | Description

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Default

value |Set this attribute to the

related object.

related object.

org.eclipse.persistence.annotations.JoinFetchType
enumerated type of the fetch that you will be using.

The following are the valid values for the JoinFetchType:

® INNER — This option provides the inner join fetching of the

Note: Inner joining does not allow for null or empty values.
® OUTER — This option provides the outer join fetching of the

Note: Outer joining allows for null or empty values.
For more information, see the following:

® What You May Need to Know About Joins
m Using Join Reading with ObjectLevelReadQuery
= Configuring Joining at the Mapping Level

JoinFetchType. INI

This example shows how to use the @JoinFetch annotation to specify Employee field
managedEmployees.

Usage of the @JoinFetch Annotation

How to Use the @Mutable Annotation

@Entity

public class Employee implements Serializable {

@OneToMany (cascade=ALL, mappedBy="owner'")

@JoinFetch (value=0UTER)

public Collection<Employee> getManagedEmployees () {

return managedEmployees;

You can specify the @Mutalble annotation for the following mappings:

m @Basic

m QId

m QVersion

m QTransformation

@Target ({METHOD, FIELD})
@Retention (RUNTIME)

:public @interface Mutable {

boolean value () default true;

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

68 of 186

Using the @Mutable annotation, you can indicate that the value of a complex field itself can be changed or
not changed (instead of being replaced).

By default, EclipseLink assumes that Serializable types are mutable. In other words, EclipseLink
assumes the default @Mutable (value=true).

You can override this configuration using @Mutable (value=false).

By default, EclipseLink assumes that all @Basic mapping types, except Serializable types, are
immutable.

You can override this configuration using @Mutable (value=true). For example, if you need to call
Date or Calendar set methods, you can decorate a Date or Calendar persistent field using
@Mutable (value=true).

Note: For Date and Calendar types only, you can configure all such persistent
fields as mutable by setting global persistence unit property
eclipselink.temporal.mutable to true. For more information, see the
EclipseLink JPA Persistence Unit Properties for Mappings table.

Mutable basic mappings affect the overhead of change tracking. Attribute change tracking can only be
weaved with immutable mappings.

For more information, see the following:
m Unit of Work and Change Policy
= Using Weaving
® Mutability

This table lists attributes of the @Mutable annotation.

Attributes of the @Mutable Annotation

Attribute |Description Default | Required or Optional

value |Set this attribute to one of the following boolean values: true |optional

m true — The object is mutable.

m false — The object is immutable.

This example shows how to use the @Mutable annotation to specify Employee field hireDate.

Usage of the @Mutable Annotation

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

69 of 186

\@Entity

public class Employee implements Serializable {

@Temporal (DATE)
@Mutable
public Calendar getHireDate () {

return hireDate;

How to Use the @Transformation Annotation

You can use the @Transformation annotation to map an
org.eclipse.persistence.mappings.TransformationMapping, which allows to map an
attribute to one or more database columns.

\@Target ({METHOD, FIELD})
IlRetention (RUNTIME)

:public @interface Transformation {
! FetchType fetch() default EAGER;

: boolean

optional () default true;

Note: The @Transformation annotation is optional for transformation mappings:
if you specify either a @ReadTransformer, @WriteTransformer or
@WriteTransformers annotation, the mapping would become a transformation
mapping by default, without you specifying the @Transformation annotation.

This table lists attributes of the @Transformation annotation.

Attributes of the @Transformation Annotation

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Required
or
Attribute |Description Default Optional
fetch The javax.persistence.FetchType enumerated |FetchType.EAGER|optional
type that defines whether EclipseLink should lazily load or
eagerly fetch the value of the field or property.
optional |Set this attribute to define whether or not the value of the |[true optional
field or property may be null.
Note: the value you set is disregarded for primitive types,
which are considered mandatory.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

70 of 186

The following are valid values:

m true - The value of the field or property may be
null.

m false - The value of the field or property may not
be null.

For more information, see the following:

m How to Use the @ReadTransformer Annotation
®= How to Use the @WriteTransformer Annotation

How to Use the @ReadTransformer Annotation

Use the @ReadTransformer annotation with the @Transformation mapping to define transformation
of one or more database column values into an attribute value. Note that you can only use this annotation if
the @Transformation mapping is not write-only.

\@Target (value={METHOD, FIELD})

IlRetention (value=RUNTIME)

:public @interface ReadTransformer {

1 Class transformerClass () default void.class;

| String method() default "";

This table lists attributes of the @ReadTransformer annotation.

Attributes of the @ReadTransformer Annotation

Attribute Description

method Set this attribute to the String method name that the mapped class must have. This i
not assign a value to the attribute; instead, it returns the value to be assigned to the ¢

transformerClass|Set this attribute to the Class that implements the
org.eclipse.persistence.mappings.transformers.AttributeTr
interface. This will instantiate the class and use its buildAttributeValue metl
the value to be assigned to the attribute.

For more information, see see How to Configure Attribute Transformer Using Java.

"'You must specify either the transformerClass or method, but not both

How to Use the @WriteTransformer Annotation

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Use the @WriteTransformer annotation with the @Transformation mapping to define transformation
of an attribute value to a single database column value. Note that you can only use this annotation if the
@Transformation mapping is not read-only.

1

1@Target (value={METHOD, FIELD})
l@Retention (value=RUNTIME)

lpublic @interface WriteTransformer ({

: Class transformerClass () default void.class;

: String method () default "";

f Column column () default @Column;

1

"

L e e e e mEEE ErEE EE ECrCmCCmCmEm e ;E ;— .. .- .- - - - - === === -

This table lists attributes of the @WriteTransformer annotation.

Attributes of the @WriteTransformer Annotation

Attribute Description

method Set this attribute to the St ring method name that the mapped class must have. Thi
method returns the value to be written into the database column.

Note: for proper support of DDL generation and returning policy, define the method
return not just an Object, but a particular type, as the following example shows:

The method may require a @Transient annotation to avoid being mapped as the
@Basic by default.

transformerClass|Set this attribute to the Class that implements the
org.eclipse.persistence.mappings.transformers.FieldTransft
interface. This will instantiate the class and use its buildFieldValue method to
the value to be written into the database column.

For more information, see see How to Configure Field Transformer Associations.

Note: for proper support of DDL generation and returning policy, define the method
return not just an Object, but a relevant Java type, as the following example shows

column Set this attribute to a Column into which the value should be written.

You may choose not to set this attribute if a single WriteTransformer annotate
attribute. In this case, the attribute's name will be used as a column name.

!'You must specify either the transformerClass or method, but not both.

71 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

72 of 186

How to Use the @WriteTransformers Annotation

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Use the @WriteTransformers annotation with the @Transformation mapping to wrap multiple
write transformers. Note that you can only use this annotation if the @Transformation mapping
is not read-only.

1

@Target (value={METHOD, FIELD})
\@Retention (value=RUNTIME)

:public @interface WriteTransformers
f WriteTransformer([] wvalue () ;

This table lists attributes of the @WriteTransformers annotation.

Attributes of the @WriteTransformers Annotation

Attribute

Description

Default

Required or Optional

value

Set this attribute to the array of WriteTransformer.

no default

optional

How to Use the @VariableOneToOne Annotation

You can use the @VariableOneToOne annotation to map an
org.eclipse.persistence.mappings.VariableOneToOneMapping, which you use to
represent a pointer references between a Java object and an implementer of an interface. This mapping is
typically represented by a single pointer (stored in an instance variable) between the source and target
objects. In the relational database tables, these mappings are usually implemented using a foreign key and a

type code.

\@Target ({METHOD, FIELD})

I@Retention (RUNTIME)

:public @interface VariableOneToOne ({

1 Class targetInterface() default void.class;
CascadeType[] cascade() default {};
FetchType fetch () default EAGER;

DiscriminatorColumn discriminatorColumn ()

DiscriminatorClass|[] discriminatorClasses () default {};

1
1
1
: boolean optional () default true;
1
1
1
1
1

default @DiscriminatorColumn;

Specify the @VariableOneToOne annotation within an @Entity (see Section 8.1 "Entity" of the JPA
Specification (http://jep.org/en/jsr/detail?id=220)), @MappedSuperclass or @Embeddable class.

This table lists attributes of the @VariableOneToOne annotation.

Attributes of the @VariableOneToOneAnnotation

Attribute

Description

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

73 of 186

cascade Set this attribute to an array of javax.persistence.CascadeType
objects to indicate operations that must be cascaded to the target of the
association.

discriminatorClasses|Set this attribute to an array of
org.eclipse.persistence.annotations.DiscriminatorClas
objects to provide a list of discriminator types that can be used with this
variable one-to-one mapping,

If none are specified, then those entities within the persistence unit that
implement the target interface will be added to the list of types. In this case, th
discriminator type will default as follows:

m [fthe javax.persistence.DiscriminatorColumn type is
STRING,itis Entity.name ()

m [fthe DiscriminatorColumn type is CHAR, it is the first letter of
the Entity class

m [fthe DiscriminatorColumn type is INTEGER it is the next integ
after the highest integer explicitly added.

discriminatorColumn |Set this attribute to the javax.persistence.DiscriminatorColumn
that will hold the type indicators.

If the discriminator column is not specified, the name of the discriminator
column defaults to "DTYPE", and the discriminator type - to STRING.

fetch The javax.persistence.FetchType enumerated type that defines
whether EclipseLink should lazily load or eagerly fetch the value of the field c
property.

optional Set this attribute to define whether or not the association is optional.

The following are valid values:

® true - The association is optional.
B false - A non-null relationship must always exist.

targetInterface Set this attribute to an interface class that is the target of the association.

If not specified, it will be inferred from the type of the object being referenced

How to Use the Persistence Unit Properties for Mappings

This table lists the persistence unit properties that you can define in a persistence.xml file to configure
EclipseLink mappings.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

74 of 186

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

EclipseLink JPA Persistence Unit Properties for Mappings

Property

Usage

eclipselink.temporal.mutable

Specify whether or not EclipseLink JPA should handle all Date a
persistent fields as mutable objects.

The following are the valid values:

m true — all Date and Calendar persistent fields are mut:
m false —all Date and Calendar persistent fields are im

For more information, see the following:
= How to Use the @Mutable Annotation

= Mutability

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitPrope
:propertiesMap .put (PersistenceUnitProperties.TEMPORAL MUTAB

For information about the use of annotations as opposed to persistence unit properties and vice versa, see the

following:

= What you May Need to Know About Overriding Annotations in JPA
= What You May Need to Know About EclipseLink JPA Overriding Mechanisms.

For more information about persistence unit properties, see What you May Need to Know About Using
EclipseLink JPA Persistence Unit Properties.

Using EclipseLink JPA Converters

EclipseLink defines the following converter annotations (in addition to JPA-defined ones):

@Converter
@TypeConverter
@ObjectTypeConverter
@StructConverter
@Convert

EclipseLink persistence provider searches the converter annotations in the following order:

®m @Convert

m @Enumerated
m QLob

B @Temporal

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

m Serialized (automatic)

You can define converters at the class, field and property level. You can specify EclipseLink converters on
the following classes:

B @Entity (see Section 8.1 "Entity" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220))
m (MappedSuperclass
® @Embeddable

You can use EclipseLink converters with the following mappings:

@Basic

@Id

@Version
@BasicMap
@BasicCollection

If you specify a converter with any other type of mapping annotation, EclipseLink will throw an exception.

How to Use the @Converter Annotation

You can use @Converter annotation to specify a custom converter for modification of the data value(s)
during the reading and writing of a mapped attribute.

\@Target ({TYPE, METHOD, FIELD})
IRRetention (RUNTIME)

:public @interface Converter {
1 String name () ;

: Class converterClass();

This table lists attributes of the @Converter annotation.

Attribute Description Defaul
name Set this attribute to the St ring name for your converter. Ensure that this no
name is unique across the persistence unit default

converterClass|Set this attribute to the Class of your converter. This class must implement |no

the EclipseLink default
org.eclipse.persistence.mappings.converters.Converter
interface.

This example shows how to use the @Converter annotation to specify Employee field gender.

Usage of the @Converter Annotation

75 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

e e e e e e e e e e e e m e mm e = 1
! 1
@Entity .
public class Employee implements Serializable/{ .
1

ce ,
@Basic '
@Converter ('
name="genderConverter", 1
converterClass=org.myorg.converters.GenderConverter.class :

) |
@Convert ("genderConverter") .
public String getGender () { .
return gender; .

|

1

1

1

How to Use the @TypeConverter Annotation

The @TypeConverter is an EclipseLink-specific annotation. You can use it to specify an
org.eclipse.persistence.mappings.converters.TypeConversionConverter for
modification of the data value(s) during the reading and writing of a mapped attribute.

:@Target({TYPE, METHOD, FIELD})
\@Retention (RUNTIME)

public @interface TypeConverter {

! String name () ;

Class dataType () default void.class;
Class objectType () default void.class;

This table lists attributes of the @TypeConverter annotation.

Required or

Attribute Description Default Optional
name Set this attribute to the String name for your converter. [no default required

Ensure that this name is unique across the persistence

unit.
dataType |Set this attribute to the type stored in the database. void.class!|optional
objectType |Set the value of this attribute to the type stored on the void.class!|optional

entity.

! The default is inferred from the type of the persistence field or property.

This example shows how to use the @TypeConverter annotation to convert the Double value stored in
the database to a Float value stored in the entity.

76 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

77 of 186

Usage of the @TypeConverter Annotation

@Entity
public class Employee implements Serializable/{

@TypeConverter (
name="doubleToFloat",
dataType=Double.class,
objectType=Float.class,

@Convert ("doubleToFloat")
public Number getGradePointAverage () {
return gradePointAverage;

:)

How to Use the @ObjectTypeConverter Annotation

You can use the @0bjectTypeConverter annotation to specify an
org.eclipse.persistence.mappings.converters.ObjectTypeConverter that converts a

fixed number of database data value(s) to Java object value(s) during the reading and writing of a mapped
attribute.

:@Target ({TYPE, METHOD, FIELD})

\@Retention (RUNTIME)

public @interface ObjectTypeConverter {

: String name () ;

1 Class dataType () default void.class;

: Class objectType () default void.class;
: ConversionValue[] conversionValues();

1 String defaultObjectValue () default "";
1
1

This table lists attributes of the @0bjectTypeConverter annotation.

Required
or
Attribute Description Default Optional
name Set this attribute to the String name for your no default required
converter. Ensure that this name is unique across
the persistence unit
dataType Set this attribute to the type stored in the database. |,oiq.c1ass! |optional
objectType Set the value of this attribute to the type stored on |,oiq.c1ass! |optional
the entity.
conversionValues |Set the value of this attribute to the array of no default required

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

78 of 186

conversion values (instances of
ConversionValue: String objectValue
and String dataValue. See the Usage of the
@ObjectTypeConverter Annotation example, to
be used with the object converter.

defaultObjectValue|Set the value of this attribute to the default object |empty String|optional
value. Note that this argument is for dealing with
legacy data if the data value is missing.

! The default is inferred from the type of the persistence field or property.

This example shows how to use the @0bjectTypeConverter annotation to specify the Employee field
gender.

Usage of the @ObjectTypeConverter Annotation

1
1
1
.« o . !
1

@ObjectTypeConverter (!
name="genderConverter", !
dataType=java.lang.String.class, 1

1

objectType=java.lang.String.class, 1
conversionValues={ :
@ConversionValue (dataValue="F", objectValue="Female"), X
@ConversionValue (dataValue="M", objectValue="Male") } .

) .
@Convert ("genderConverter") ,
public String getGender () { !
return gender; !

.

1

1

1

1

4

How to Use the @StructConverter Annotation

The @StructConverter is an EclipseLink-specific annotation. You can add it to an
org.eclipse.persistence.platform.database.DatabasePlatform using its
addStructConverter method to enable custom processing of java.sqgl.Struct types.

\@Target ({TYPE, METHOD, FIELD})
IlRetention (RUNTIME)

:public @interface StructConverter ({
! String name () ;

f String converter();

This table lists attributes of the @StructConverter annotation.

Requ

Attribute Description Default

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

or
Optic
name Set this attribute to the St ring name for your converter. Ensure that this no requil
name is unique across the persistence unit. default
converter |Set this attribute to the converter class as a String. This class must no requil
implement the EclipseLink default
org.eclipse.persistence.mappings.converters.Converter
interface.

This example shows how to define the @St ructConverter.

Defining the @StructConverter

g g g 4

1
:@StructConverter(name="MyType", ,
. converter="myproject.converters.MyStructConverter") !

1

Lcmccmccmmcmcmcrccmcmmccmccmcm-mcmemmmmmmemmme e e e mem e e e e e e e e e e e e e e e m e mm— e —m—,——————— -

You can specify the @StructConverter annotation anywhere in an Ent ity with the scope being the
whole session.

EclipseLink will throw an exception if you add more than one StructConverter that affects the same
Java type.

A @StructConverter exists in the same namespaces as @Converter. EclipseLink will throw a
validation exception if you add a Converter and a StructConverter of the same name.

Note: You can also configure structure converters ina sessions.xml file (see
What You May Need to Know About EclipseLink JPA Overriding Mechanisms).

Using Structure Converters to Configure Mappings

In EclipseLink, a DatabasePlatform (see Database Platforms) holds a structure converter. An
org.eclipse.persistence.database.platform.converters.StructConverter affects
all objects of a particular type read into the Session that has that DatabasePlatform. This prevents
you from configuring the StructConverter on a mapping-by-mapping basis. To configure mappings that
use the StructConverter, you call their setFieldType (java.sgl.Types.STRUCT) method.
You must call this method on all mappings that the StructConverter will affect — if you do not call it,
errors might occur.

The JPA specification requires all @Basic mappings (see @Basic) that map to a non-primitive or a
non-primitive-wrapper type have a serialized converter added to them. This enables certain STRUCT types to
map to a field without serialization.

79 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

80 of 186

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

You can use the existing @Convert annotation with its value attribute set to the StructConverter

name — in this case, EclipseLink will apply appropriate settings to the mapping. This setting will be required
on all mappings that use a type for which a StructConverter has been defined. Failing to configure the
mapping with the @Convert will cause an error.

For more information, see the following:

m Object-Relational Data Type Structure Mapping
m Object-Relational Data Type Descriptors

How to Use the @Convert Annotation

The @Convert annotation specifies that a named converter should be used with the corresponding mapped

attribute.

1

@Target ({METHOD, FIELD})
\@Retention (RUNTIME)

:public @interface Convert {

' String value () default "none";

The @Convert has the following reserved names:

®m serialized — places the
org.eclipse.persistence.mappings.converters.SerializedObjectConverter
on the associated mapping.
= none — does not place a converter on the associated mapping.

This table lists attributes of the @Convert annotation.

Attributes of the @Convert Annotation

Required or

Attribute | Description Default Optional
value |Set this attribute to the String name for your "none" optional
converter. String

This example shows how to use the @Convert annotation to define the Employee field gender.

Usage of the @Convert Annotation

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

:@Entity
@Table (name="EMPLOYEE")
@Converter (
name="genderConverter",
converterClass=org.myorg.converters.GenderConverter.class

)

public class Employee implements Serializable(
@Basic
@Convert ("genderConverter")

public String getGender () {
return gender;

Using EclipseLink JPA Extensions for Entity Caching

The EclipseLink cache is an in-memory repository that stores recently read or written objects based on class
and primary key values. EclipseLink uses the cache to do the following:

® Improve performance by holding recently read or written objects and accessing them in-memory to
minimize database access.

®m Manage locking and isolation level.

= Manage object identity.

For more information about the EclipseLink cache and its default behavior, see Introduction to Cache.
EclipseLink defines the following entity caching annotations:

m @Cache
m @TimeOfDay
m QExistenceChecking

EclipseLink also provides a number of persistence unit properties that you can specify to configure the
EclipseLink cache (see How to Use the Persistence Unit Properties for Caching). These properties may
compliment or provide an alternative to the usage of annotations.

For more information, see the following:

= What You May Need to Know About Overriding Annotations in JPA
= What You May Need to Know About Using EclipseLink JPA Persistence Unit Properties

How to Use the @Cache Annotation

EclipseLink uses identity maps to cache objects in order to enhance performance, as well as maintain object
identity. You can control the cache and its behavior by decorating your entity classes with the @Cache
annotation.

81 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

\@Target ({TYPE})
' @Retention (RUNTIME)
public @interface Cache {
CacheType type () default SOFT WEAK;
int size () default 100;
boolean shared() default true;
int expiry() default -1;
TimeOfDay expiryTimeOfDay () default QTimeOfDay (specified=false) ;
boolean alwaysRefresh () default false;
boolean refreshOnlyIfNewer () default false;
boolean disableHits () default false;
CacheCoordinationType coordinationType () default SEND OBJECT CHANGES;

You may define the @Cache annotation on the following:

®m @Entity (see Section 8.1 "Entity" of the JPA Specification (http:/jcp.org/en/jsr/detail?id=220));
m @MappedSuperclass;
m the root of the inheritance hierarchy (if applicable).

Note: If you define the @Cache annotation on an inheritance subclass, the annotation
will be ignored.

Attributes of the @Cache Annotation

Attribute Description

type Set this attribute to the type
(org.eclipse.persistence.annotations.CacheType enumerated
type) of the cache that you will be using.

The following are the valid values for the CacheType:

® FULL — This option provides full caching and guaranteed identity: all obje
are cached and not removed.

Note: this process may be memory-intensive when many objects are read.
® WEAK — This option is similar to FULL, except that objects are referenced
using weak references. This option uses less memory than FULL, allows

complete garbage collection and provides full caching and guaranteed
identity. We recommend using this identity map for transactions that, once
started, stay on the server side.

m SOFT — This option is similar to WEAK except that the map holds the obje:
using soft references. This identity map enables full garbage collection wh
memory is low. It provides full caching and guaranteed identity.

® SOFT WEAK — This option is similar to WEAK except that it maintains a
frequently used subcache that uses soft references. The size of the subcac

82 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

83 of 186

is proportional to the size of the identity map. The subcache uses soft
references to ensure that these objects are garbage-collected only if the
system is low on memory. We recommend using this identity map in most
circumstances as a means to control memory used by the cache.

= HARD WEAK — This option is similar to SOFT WEAK except that it maintz
a most frequently used subcache that uses hard references. Use this identit
map if soft references are not suitable for your platform.

® CACHE — With this option, a cache identity map maintains a fixed number
objects that you specify in your application. Objects are removed from the
cache on a least-recently-used basis. This option allows object identity fo1
most commonly used objects.
Note: this option furnishes caching and identity, but does not guarantee
identity.

® NONE — This option does not preserve object identity and does not cache
objects. We do not recommend using this option.

size

Set this attribute to an int value to define the size of cache to use (number of
objects).

shared

Set this attribute to a boolean value to indicate whether cached instances shoul

be in the shared cache or in a client isolated cache (see Isolated Client Session
Cache).

The following are the valid values:

m true - use shared cache for cached instances;
m false - use client isolated cache for cached instances.

expiry

Set this attribute to the int value to enable the expiration of the cached instance
after a fixed period of time (milliseconds). Queries executed against the cache af
this will be forced back to the database for a refreshed copy.

expiryTimeOfDay

Set this attribute to a specific time of day
(org.eclipse.persistence.annotations.TimeOfDay) when the
cached instance will expire. Queries executed against the cache after this will be
forced back to the database for a refreshed copy.

alwaysRefresh

Set this attribute to a boolean value of true to force all queries that go to the
database to always refresh the cache.

refreshOnlyIfNewer

Set this attribute to a boolean value of true to force all queries that go to the
database to refresh the cache only if the data received from the database by a qux
is newer than the data in the cache (as determined by the optimistic locking field)

Note: This option only applies if one of the other refreshing options, such as
alwaysRefresh, is already enabled.

Note: A version field is necessary to apply this feature.

For more information, see the following:

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

What You May Need to Know About Version Fields

Optimistic Version Locking Policies

Configuring Locking

Section 3.4 "Optimistic Locking and Concurrency" of the JPA Specificatic
(http://jcp.org/en/jsr/detail 7id=220)

Section 9.1.17 "Version Annotation" of the JPA Specification (http:/jcp.o:
/en/jsr/detail?id=220)

disableHits Set this attribute to a boolean value of true to force all queries to bypass the
cache for hits, but still resolve against the cache for identity. This forces all quer
to hit the database.

coordinationType Set this attribute to the cache coordination mode
(org.eclipse.persistence.annotations.CacheCoordinationT

enumerated type).
The following are the valid values for the CacheCoordinationType:

m SEND OBJECT CHANGES — This option sends a list of changed objects
(including information about the changes). This data is merged into the
receiving cache.

® INVALIDATE CHANGED OBJECTS — This option sends a list of the
identities of the objects that have changed. The receiving cache invalidates
objects (rather than changing any of the data).

B SEND NEW OBJECTS WITH CHANGES — This option is similar to
SEND_ OBJECT CHANGES except it also includes any newly created obji
from the transaction.

= NONE — This option does not coordinate cache.

For more information, see Cache Coordination.

Note: If you define the @Cache annotation on @Embeddable (see @Embeddable),
EclipseLink will throw an exception.

This example shows how to achieve the desired behavior of the EclipseLink cache by defining the attributes
of the @Cache annotation.

Usage of @Cache Annotation

84 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

e m e e m e e e e mm e e e e m .
! 1
@Entity .
\ @Table (name="EMPLOYEE") !
i @Cache (!
. type=CacheType.WEAK, !
. isolated=false, !
. expiry=600000, :
! alwaysRefresh=true, f
! disableHits=true, '
! coordinationType=INVALIDATE CHANGED OBJECTS .
1) :
! 1
! 1
! 1
! 1
! 1
! 1
! 1

public class Employee implements Serializable {

What You May Need to Know About Version Fields

By default, EclipseLink persistence provider assumes that the application is responsible for data consistency.

Use the @Version annotation (see Configuring Locking) to enable the JPA-managed optimistic locking by
specifying the version field or property of an entity class that serves as its optimistic lock value
(recommended).

When choosing a version field or property, ensure that the following is true:

m there is only one version field or property per entity;

® you choose a property or field persisted to the primary table (see Section 9.1.1 "Table Annotation" of
the JPA Specification (http://jcp.org/en/jsr/detail?id=220));

= your application does not modify the version property or field.

How to Use the Persistence Unit Properties for Caching

The EclipseLink JPA Properties for Caching table lists the persistence unit properties that you can define in
apersistence.xml file to configure the EclipseLink cache.

For more information, see the following:

= Introduction to Cache

= What You May Need to Know About EclipseLink JPA Overriding Mechanisms

= What You May Need to Know About Overriding Annotations in JPA

= What You May Need to Know About Using EclipseLink JPA Persistence Unit Properties

EclipseLink JPA Properties for Caching

Property Usage

eclipselink.cache.type.default |The default type of session cache.

A session cache is a shared cache that services clients attacl
read objects from or write objects to the data source using a
copy of the objects in the parent server session's cache and 1
sessions. From a JPA perspective, an EntityManagerFa
org.eclipse.persistence.sessions.server.sS

85 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

wrap an org.eclipse.persistence.sessions.Un
org.eclipse.persistence.sessions.server.C
information about sessions, see Introduction to EclipseLink {

The following are the valid values for the use ina persist
org.eclipse.persistence.config.CacheType:

m Full — This option provides full caching and guaran
flushed from memory unless they are deleted.
For more information, see Full Identity Map.

m Weak — This option is similar to Full, except that ol
references. This option uses less memory than Full,
caching strategy across client/server transactions. We
for transactions that, once started, stay on the server s
For more information, see Weak Identity Map.

m Soft — This option is similar to Weak except that th
references. This identity map enables full garbage col
provides full caching and guaranteed identity.

For more information, see Soft Identity Map.

m SoftWeak — This option is similar to Weak except t
used subcache that uses soft references. We recommg
circumstances as a means to control memory used by
For more information, see Soft Cache Weak Identity !
Map.

® HardWeak — This option is similar to Weak except t
used subcache that uses hard references.

For more information, see Soft Cache Weak Identity |
Map.

® NONE — This option does not preserve object identity
does not recommend using this option.

For more information, see No Identity Map or to turn
"eclipselink.cache.shared'="false".

Note: The values are case-sensitive.

Note: Using this property, you can override the @Cache am
@Cache Annotation) attribute type.

Example: persistence.xml file

:import org.eclipse.persistence.config.CacheType;
\import org.eclipse.persistence.config.PersistenceUnit
:propertiesMap .put (PersistenceUnitProperties.CACHE TYE

eclipselink.cache.size.default |The default maximum number of objects allowed in an Eclip

Valid values: 0 to Integer .MAX VALUE as a String.

86 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnit
:propertiesMap.put(PersistenceUnitProperties.CACHEile

eclipselink.cache.shared.default|The default for whether or not the EclipseLink session cache
sessions.

The following are the valid values:

m true — The session cache services all clients attache
objects from or write objects to the data source using
copy of the objects in the parent server session's cach
other processes in the session.

m false — The session cache services a single, isolate
client can reference objects in a shared session cache
in the isolated client's exclusive cache.

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnit
:propertiesMap.put(PersistenceUnitProperties.CACHEisHA

eclipselink.cache.type.<ENTITY> |The type of session cache for the JPA entity named <ENTI"
<ENTITY>.

For more information on entity names, see Section 8.1 "Entit
(http://jcp.org/en/jsr/detail 7id=220) .

The following are the valid values for the use ina persist
org.eclipse.persistence.config.CacheType:

"Full" —see eclipselink.cache.type.def.
"HardWeak" —see eclipselink.cache.type
"NONE" —see eclipselink.cache.type.def.
"SoftWeak" —see eclipselink.cache.type
"Weak" —see eclipselink.cache.type.def.
Note: Using this property, you can override the @Cac

87 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Example: persistence.xml file

limport org.eclipse.persistence.config.CacheType;
:import org.eclipse.persistence.config.PersistenceUnit
:propertiesMap.put(PersistenceUnitProperties.CACHEiTYE

eclipselink.cache.size.<ENTITY> |The maximum number of JPA entities of the type denoted by

allowed in an EclipseLink cache. For more information on et
of the JPA Specification (http:/jcp.org/en/jsr/detail?1d=220)

Valid values: 0 to Integer .MAX VALUE as a String.

Example: persistence.xml file

1.
[import org.eclipse.persistence.config.PersistenceUnit
:propertiesMap.put(PersistenceUnitProperties.CACHEisIZ

eclipselink.cache.shared. Whether or not the EclipseLink session cache is shared by ir
<ENTITY> entities of the type denoted by JPA entity name <ENTITY>.
For more information on entity names, see Section 8.1 "Entit
(http://jcp.org/en/jsr/detail 2id=220) .

The following are the valid values:

m true — The session cache services all clients attache
objects from or write objects to the data source using
copy of the objects in the parent server session's cach
other processes in the session.

m false — The session cache services a single, isolate
client can reference objects in a shared session cache
in the isolated client's exclusive cache.

Example: persistence.xml file

Example: property Map

88 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

1.
\import org.eclipse.persistence.config.PersistenceUnit
:propertiesMap.put(PersistenceUnitProperties.CACHE_SHP

eclipselink.flush-clear.cache Defines the EntityManager cache behaviour after a call
call to the clear method. You can specify this property wt
EntityManagerFactory (either in the map passed to th
createEntityManagerFactory method, or in the pe:
EntityManager (in the map passed to the createEnti
latter overrides the former.

The following are the valid values for the use ina persist
org.eclipse.persistence.config.FlushClear

m Drop — The call to the c1ear method results in a dr
cache. This mode is the fastest and uses the least met
shared cache might potentially contain stale data.

®m DropInvalidate — Even though the call to the c1
entire EntityManager’s cache, classes that have a
are invalidated in the shared cache at commit time. TI
efficient memory usage-wise, and prevents stale data.

m Merge — The call to the clear method results in a ¢
cache of objects that have not been flushed. This moc
perfect state after commit. However, it is the least me
might even run out in a very large transaction.

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnit
:propertiesMap.put(PersistenceUnitProperties.FLUSHicLE

How to Use the @ TimeOfDay Annotation

You can use the @TimeOfDay annotation to specify a time of day using a Calendar instance. By doing
so, you configure cache expiry on an entity class.

1
\@Target ({}) !
1I@Retention (RUNTIME) .
:public @interface TimeOfDay { 1
1 int hour() default 0; .
int minute() default 0; 1
1
1
1
1
1
1

1

1

1 int second() default 0;

: int millisecond() default 0;
1

1

L mfE e fEEffffECEfmfCmEEErmrmCmEmr;r ;e e e ;e e ;e ;e e e e e e e e e e e e — - mm— - m—————————— = -

This table lists attributes of the @ TimeOfDay annotation.

89 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

90 of 186

Attributes of the @TimeOfDay Annotation

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Required or

Attribute Description Default| Optional
hour Set this attribute to the int value representing an hour of |0 optional

the day.
minute Set this attribute to the int value representing a minute of |0 optional

the day.
second Set this attribute to the int value representing a second of |0 optional

the day.
millisecond|Set this attribute to the int value representing a 0 optional

millisecond of the day.

How to Use the @ExistenceChecking Annotation

Use the @Ex1istenceChecking annotation to specify the type of checking that EclipseLink should use
when determining if an Ent ity is new or already existing.

On a merge operation, this annotation determines whether or not EclipseLink should only use the cache to
check if an object exists, or should read the object (from the database or cache).

1

@Target ({TYPE})

\@Retention (RUNTIME)

:public @interface ExistenceChecking {

' ExistenceType value() default CHECK_ CACHE;

You may define the @ExistenceChecking annotation on the following:

®m @Entity (see Section 8.1 "Entity" of the JPA Specification (http:/jcp.org/en/jsr/detail?id=220));
B @MappedSuperclass;

This table lists attributes of the @ExistenceChecking annotation.

Attributes of the @ExistenceChecking Annotation

Attribute | Description Default

(org.eclipse.persistence.annotations.ExistenceType

value |Set this attribute to the type One of the following de

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

must exist.

m CHECK DATABASE — This option triggers the object existence
check on a database.

® ASSUME EXISTENCE — This option assumes that if the object's
primary key does not include nul1l, then the object must exist.
You may choose this option if your application guarantees the
existence checking, or is not concerned about it.

= ASSUME NON EXISTENCE — This option assumes that the
object does not exist.
You may choose this option if your application guarantees the
existence checking, or is not concerned about it.
If you specify this option, EclipseLink will force the call of an
insert operation.

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

enumerated type) of the existence checking that you will be using to B ExistenceTy,
determine if an insert or an update operation should occur for an object. either an @Ex1is

annotation or an

The following are the valid values for the ExistenceType: the value attrit

m ExistenceTy]

m CHECK CACHE — This option assumes that if the object's primary - If neither the @]
key does not include null and it is in the cache, then this object

annotation nor ar

Using EclipseLink JPA Extensions for Customization and

Optimization

EclipseLink defines one descriptor customizer annotation — @Customizer (see How to Use the

@Customizer Annotation).

EclipseLink also provides a number of persistence unit properties that you can specify to configure
EclipseLink customization and validation (see How to Use the Persistence Unit Properties for Customization
and Validation). These properties may compliment or provide an alternative to the usage of annotations.

Note: Persistence unit properties always override the corresponding annotations'

attributes.

For more information, see the following:

= What You May Need to Know About Overriding Annotations in JPA
= What You May Need to Know About Using EclipseLink JPA Persistence Unit

Properties

In addition, EclipseLink provides a persistence unit property that you can specify to optimize your
application (see How to Use the Persistence Unit Properties for Optimization).

How to Use the @Customizer Annotation

91 of 186

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Use the @Customizer annotation to specify a class that implements the
org.eclipse.persistence.config.DescriptorCustomizer interface and that is to be run
against a class' descriptor after all metadata processing has been completed. See
eclipselink.descriptor.customizer.<ENTITY> for more information.

1

@Target ({TYPE})

\@Retention (RUNTIME)

lpublic @interface Customizer {
T

f Class value();

You can define the @Customizer annotation on the following:

®m @Entity (see Section 8.1 "Entity" of the JPA Specification (http:/jcp.org/en/jsr/detail?id=220));
®m @MappedSuperclass
® @Embeddable

Note: A @Customizer is not inherited from its parent classes.

This table lists attributes of the @Customizer annotation.

Attributes of the @Customizer Annotation

Required or
Attribute | Description Default |Optional
value |Set this attribute to the Class of the descriptor customizer that you |no required
want to apply to your entity's descriptor. default

This example shows how to use the @Customizer annotation.

Usage of the @Customizer Annotation

E@Entity .
' @Table (name="EMPLOYEE") ,
| @Customizer (mypackage.MyCustomizer.class) !
E public class Employee implements Serializable { !
1 1
1 1

1

How to Use the Persistence Unit Properties for Customization and Validation

This table lists the persistence unit properties that you can define in a persistence.xml file to configure
EclipseLink customization and validation.

92 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

EclipseLink JPA Properties for Customization and Validation

Property Usage

eclipselink.orm.throw.exceptions |Specify whether or not EclipseLink JPA should throw an
files listed ina persistence.xml file <mapping-f

The following are the valid values:
®m true — throw exceptions.

m false —log warning only.

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistencelU
:propertiesMap.put(PersistenceUnitProperties.ECLIPS

eclipselink.exception-handler Specify an EclipseLink exception handler class: a Java cl
org.eclipse.persistence.exceptions.Exce
constructor. Use this class’ handleException methoc
exception, throw a different exception, or retry a query or

For more information, see Exception Handlers.

Valid values: class name of an ExceptionHandler cl

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceU
:propertiesMap.put(PersistenceUnitProperties.EXCEPT

eclipselink.weaving Control whether or not the weaving of the entity classes is
enhance JPA entities for such things as lazy loading, chan

The following are the valid values:

® true — weave entity classes dynamically.
m false — do not weave entity classes.
B static — weave entity classes statically.

93 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

This assumes that classes have already been statically wc
For more information, see the following:

m Using EclipseLink JPA Weaving
= How to Configure Dynamic Weaving for JPA Entit
= How to Configure Static Weaving for JPA Entities

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistencelU
:propertiesMap.put(PersistenceUnitProperties.WEAVIN

eclipselink.weaving.lazy

Enable or disable the lazy one-to-one (see @OneToOne)
The following are the valid values:

® true — enable lazy one-to-one mapping through w
m false — disable lazy one-to-one mapping through

Note: you may set this option only if the eclipselink
eclipselink.weaving.lazy optionis to provide r

For more information, see the following:

m Using EclipseLink JPA Weaving
= What You May Need to Know About EclipseLink

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceU
:propertiesMap.put(PersistenceUnitProperties.WEAVIN

eclipselink.weaving.changetracking

Enable or disable the AttributeLevelChangeTrac
The following are the valid values:

® true —enable the AttributelLevelChangeT
allowing change tracking have change tracking enal
m false —disable the AttributeLevelChange

94 of 186

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

95 of 186

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

® you cannot weave at all;

= you do not want your classes to be changed

m you wish to disable this feature for configur
java.util.Dateor java.util.Cal
instance variables).

Note: you may set this option only if the eclipselink
eclipselink.weaving.changetracking option

For more information, see the following:

= Using EclipseLink JPA Weaving
= Configuring Change Policy

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistencelU
:propertiesMap.put(PersistenceUnitProperties.WEAVIN

eclipselink.weaving.fetchgroups

Enable or disable fetch groups through weaving,
The following are the valid values:

® true — enable the use of fetch groups through we:

m false — disable the use of fetch groups. Use this
® you cannot weave at all;

= you do not want your classes to be changed

disable this feature for configurations that d

Note: you may set this option only if the eclipselink
eclipselink.weaving.fetchgroups option is tc

For more information, see the following:

m Using EclipseLink JPA Weaving
= Configuring Fetch Groups

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceU
:propertiesMap.put(PersistenceUnitProperties.WEAVIN

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

eclipselink.weaving.internal Enable or disable internal optimizations through weaving,
The following are the valid values:

®m true — enable internal optimizations through weax
m false — disable internal optimizations through we

Note: you may set this option only if the eclipselink
eclipselink.weaving.internal option is to pro

For more information, see Using EclipseLink JPA Weavir

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistencelU
:propertiesMap.put(PersistenceUnitProperties.WEAVIN

eclipselink.weaving.eager Enable or disable indirection on eager relationships throu;
The following are the valid values:

® true — enable indirection on eager relationships tl
m false — disable indirection on eager relationships

Note: you may set this option only if the eclipselink
eclipselink.weaving.eager option is to provide

For more information, see the following:

m Using EclipseLink JPA Weaving
m Value Holder Indirection

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceU
:propertiesMap.put(PersistenceUnitProperties.WEAVIN

eclipselink.session.customizer Specity an EclipseLink session customizer class: a Java «
org.eclipse.persistence.config.SessionC
Use this class' customize method, which takes an org

96 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

programmatically access advanced EclipseLink session A
For more information, see Session Customization.

Valid values: class name of a SessionCustomizer ¢

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistencelU
:propertiesMap.put(PersistenceUnitProperties.SESSIO

eclipselink.descriptor.customizer. |Specify an EclipseLink descriptor customizer class —a Ja
<ENTITY> org.eclipse.persistence.config.Descript
constructor. Use this class's customize method, which
org.eclipse.persistence.descriptors.Cle
descriptor and mapping API for the descriptor associated

For more information on entity names, see Section 8.1 "E
For more information, see Descriptor Customization.

Note: EclipseLink does not support multiple descriptor ci
class fully qualified by its package name.

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistencelU
:propertiesMap.put(PersistenceUnitProperties.DESCRI

eclipselink.validation-only Specify whether or not deployment should be for validatis
The following are the valid values:

® true — deployment is only for validation; the Ecli
m false — normal deployment; the EclipseLink sess

Example: persistence.xml file

97 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

98 of 186

:import org.eclipse.persistence.config.PersistenceU
:propertiesMap.put(PersistenceUnitProperties.ECLIPS

eclipselink.classloader Specify the class loader to use for creation of an Entits
createEntityManagerFactory method.

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistencelU
:propertiesMap.put(PersistenceUnitProperties.CLASSL

For information about the use of annotations as opposed to persistence unit properties and vice versa, see the
following:

= What You May Need to Know About Overriding Annotations in JPA
= What You May Need to Know About EclipseLink JPA Overriding Mechanisms

For more information about persistence unit properties, see What You May Need to Know About Using
EclipseLink JPA Persistence Unit Properties.

How to Use the Persistence Unit Properties for Optimization

This table lists the persistence unit properties that you can define in a persistence.xml file to optimize
your EclipseLink application.

EclipseLink JPA Persistence Unit Properties for Optimization

Property Usage

eclipselink.profiler The type of the performance profiler.
For more information on performance p:

The following are the valid values for tl
org.eclipse.persistence.cor

m PerformanceProfiler — U

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

(org.eclipse.persistenc
information, see Measuring Eclip

B QueryMonitor — Monitor que
(org.eclipse.persistenc
low-overhead means for measuri
option for performance analysis i

m NoProfiler — Do not use a p¢

m Custom profiler — Use your own
org.eclipse.persistenc
constructor.

Example: persistence.xml file

:import org.eclipse.persistence.cont
\import org.eclipse.persistence.cont
:propertiesMap.put(PersistenceUnitP1

Note: Ensure that MyProfilerisiny

Example: property Map

:import org.eclipse.persistence.cont
[import org.eclipse.persistence.conft
:propertiesMap.put(PersistenceUnitP1

eclipselink.persistence.context.reference-mode |Specify whether or not the Java VM is
Java’s weak references.

In cases where your application cannot
context, use this setting to enable the VI
resulting in making resources available

You can set this property either during 1
globally in the persistence.xml fi

The following are the valid values for tl
org.eclipse.persistence.ses

m HARD - Use this option to specif
will not be available for garbage
work) is released/cleared or clos

® WEAK - Use this option to specif
Attribute Change Tracking Polic;

99 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

directly or indirectly will be avai
that object is moved to a hard re:
New and removed objects, as we
by hard references and will not b
= FORCE_ WEAK - Use this option

weak references. When a change
will not be available for garbage
change tracking may be garbage

result in a loss of changes.

New and removed objects will b

Using Java, you can configure reference
acquireUnitOfWork (Reference
use the Session's setDefaultRef

For more information, see the following
= Using EclipseLink JPA Extensio
m Cache Type and Object Identity

Example: persistence.xml file

:import org.eclipse.persistence.cont
:propertiesMap .put (PersistenceUnitP:

For information about optimization, see Optimizing the EclipseLink Application

For more information about persistence unit properties, see What You May Need to Know About Using
EclipseLink JPA Persistence Unit Properties.

Using EclipseLink JPA Extensions for Copy Policy

The copy policy enables EclipseLink to produce exact copies of persistent objects. For more information,
see Configuring Copy Policy.

EclipseLink defines the following copy policy annotations:
®m @CopyPolicy

m @CloneCopyPolicy
m @InstantitationCopyPolicy

How to Use the @CopyPolicy Annotation

Use the @CopyPolicy annotation to specify a class that implements the

100 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

101 of 186

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

org.eclipse.persistence.descriptors.copying.CopyPolicy interface to set the copy

policy onan Entity.

1

@Target ({TYPE})

\@Retention (RUNTIME)

public @interface CopyPolicy {
T

f Class value();

You can define the @CopyPolicy annotation on the following:

®m @Entity (see Section 8.1 "Entity" of the JPA Specification (http:/jcp.org/en/jsr/detail?id=220));
®m @MappedSuperclass

This table lists attributes of the @CopyPolicy annotation.

Attributes of the @CopyPolicy Annotation

The class must implement
org.eclipse.persistence.descriptors.copying.CopyPolicy

Requir«
or
Attribute | Description Default| Option:
value |Set this attribute to the Class of the copy policy that you want to apply to no requirec
your entity's descriptor. default

This example shows how to use the @CopyPolicy annotation.

Usage of the @CopyPolicy Annotation

@Entity

@Table (name="EMPLOYEE")

public

class Employee implements Serializable {

1
1
'
! @CopyPolicy (mypackage.MyCopyPolicy.class)
1
1
1

How to Use the @CloneCopyPolicy Annotation

Use the @CloneCopyPolicy annotation to set the clone copy policy
(org.eclipse.persistence.descriptors.copying.CloneCopyPolicy)onanEntity.

\@Target ({TYPE})

IRRetention (RUNTIME)

:public @interface CloneCopyPolicy {
! Sting method () ;

' Sting workingCopyMethod() ;

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

The @CloneCopyPolicy must specify one or both of the method or workingCopyMethod attributes

based on the following:

m Use the method for the clone whose function is comparison in conjunction with EclipseLink's
DeferredChangeDetectionPolicy (see Deferred Change Detection Policy).

m Use the workingCopyMethod to clone objects that will be returned, as they are registered in
EclipseLink's transactional mechanism (the unit of work).

You can define the @C1loneCopyPolicy annotation on the following:

®m @Entity (see Section 8.1 "Entity" of the JPA Specification (http:/jcp.org/en/jsr/detail?id=220));
®m @MappedSuperclass

This table lists attributes of the @CloneCopyPolicy annotation.

Attributes of the @CloneCopyPolicy Annotation

Attribute

Description

Default

Required or
Optional

method

Set this attribute to the St ring method name that
EclipseLink will use to create a clone to enable
comparison by EclipseLink's deferred change
detection policy) that you want to apply to your
entity's descriptor.

Note: you have to set either this attribute, or the
workingCopyMethod, or both.

no
default

optional/required

workingCopyMethod

Set this attribute to the St ring method name that
EclipseLink will use to create the object returned
when registering an Object in an EclipseLink unit
of work.

Note: you have to set either this attribute, or the
method, or both.

no
default

optional/required

How to Use the @InstantiationCopyPolicy Annotation

Instantiation copy policy is the default copy policy in EclipseLink. Use the
@InstantiationCopyPolicy annotation to override other types of copy policies for an Entity.

\@Target ({TYPE})
IlRetention (RUNTIME)

public @interface CloneCopyPolicy {

You can define the @InstantiationCopyPolicy annotation on the following:

B @Entity (see Section 8.1 "Entity" of the JPA Specification (http:/jcp.org/en/jsr/detail?id=220));

102 of 186

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

m (MappedSuperclass

The @InstantiationCopyPolicy annotation does not have attributes.

Using EclipseLink JPA Extensions for Declaration of Read-Only
Classes

EclipseLink defines one annotation that you can use to declare classes as read-only — @ReadOnly.
For more information, see the following:

= Configuring Read-Only Descriptors
m Declaring Read-Only Classes

How to Use the @ReadOnly Annotation

Use the @ReadOn1y annotation to specify that a class is read-only (see Declaring Read-Only Classes).

Note: Any changes made within a managed instance in a transaction or to a detached
instance and merged will have no effect in the context of a read-only entity class.

\@Target ({TYPE})
I@Retention (RUNTIME)

:public @interface ReadOnly {}
1

L e e EE e f e fEfEffCEErfmmEEr ;e e Er;r ;e E e ;e ;e ;e e e e m e e e —m e mmm - mmm i ————————— - = -

You can define the @ReadOn1y annotation on the following;
®m @Entity (see Section 8.1 "Entity" of the JPA Specification (http:/jcp.org/en/jsr/detail?id=220));
m (MappedSuperclass;
= the root of the inheritance hierarchy (if applicable).

The @ReadOnly annotation does not have attributes.

This example shows how to use the @ReadOn 1y annotation.

Usage of the @ReadOnly Annotation

103 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

104 of 186

E@Entity
@ReadOnly
public class Employee implements Serializable {

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

L e e EE e f e fEfEffCEErfmmEEr ;e e Er;r ;e E e ;e ;e ;e e e e m e e e —m e mmm - mmm i ————————— - = -

Using EclipseLink JPA Extensions for Returning Policy

The returning policy enables INSERT or UPDATE operations to return values back into the object being
written. These values include table default values, trigger or stored procedures computed values. For more

information, see Configuring Returning Policy.
EclipseLink defines the following returning policy annotations:

® @ReturnInsert
® @ReturnUpdate

How to Use the @ReturnInsert Annotation

You can only specify the @ReturnInsert for a @Basic mapping.

1

@Target ({METHOD, FIELD})

\@Retention (RUNTIME)

:public @interface ReturnInsert {

f boolean returnOnly () default false;

This table lists attributes of the @ReturnInsert annotation.

Attributes of the @Returnlnsert Annotation

Attribute Description

Default

Required or
Optional

returnOnly |Set this attribute to the boolean value of true if you want a
return of a value for this field, without including the field in the
insert.

false

optional

The Usage of the @Returnlnsert Annotation Without Arguments example shows how to use the
@ReturnInsert annotation without specifying the value for the returnOnly argument, therefore
accepting the default value of false. The Usage of the @Returnlnsert Annotation with Arguments example

shows how to set the value of the returnOnly argument to true.

Usage of the @Returnlnsert Annotation Without Arguments

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

gy g g 4

! 1
@ReturnInsert .
. public String getFirstName () | .
. return firstName; ,
! :
! 1

g -

Usage of the @Returnlnsert Annotation with Arguments

B T T e I e I T T T T T T T I e e e T T T NI 4

! 1
@ReturnInsert (returnOnly=true) .
: public String getFirstName () { .
' return firstName; .
: :
! 1

How to Use the @ReturnUpdate Annotation

You can only specify the @ReturnUpdate for a @Basic mapping.

1

:@Target ({METHOD, FIELD})
\@Retention (RUNTIME)

:public @interface ReturnUpdate {}

The @ReturnUpdate annotation does not have attributes.

This example shows how to use the @ReturnUpdate annotation.

Usage of the @ReturnUpdate Annotation

\@ReturnUpdate

lpublic String getFirstName () {
T .

f return firstName;

Using EclipseLink JPA Extensions for Optimistic Locking

EclipseLink defines one annotation for optimistic locking — @OptimisticLocking.
For more information, see the following:

m Optimistic Locking
= Configuring an Optimistic Locking Policy

How to Use the @OptimisticLocking Annotation

You can use the @0OptimisticLocking annotation to specify the type of optimistic locking that
EclipseLink should use when updating or deleting entities.

105 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

106 of 186

Note: EclipseLink supports additional optimistic locking policies beyond what is
supported through the JPA specification (such as @Version - see Section 9.1.17
"Version Annotation" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)).
When mapping to a database schema where a version column does not exist and
cannot be added, these locking policies enable the concurrency protection.

\@Target ({TYPE})

IlRetention (RUNTIME)

:public @interface OptimisticLocking {

1 OptimisticLockingType type() default VERSION COLUMN;

Column[]
boolean cascade () default false;

1
1
1
1
1
1
1
selectedColumns () default {}; 1
1
1
1
1
1
1

This table lists attributes of the @0OptimisticLocking annotation.

Attributes of the @OptimisticLocking Annotation

Attribute

Description

type

Set this attribute to the type
(org.eclipse.persistence.annotations.OptimisticLockingType
enumerated type) of the optimistic locking policy that you will be using.

The following are the valid values for the OptimisticLockingType:

m ALL COLUMNS — Use this type of locking policy to compare every field in
the table in the WHERE clause during an update or a delete operation. If any
field has been changed, EclipseLink will throw an optimistic locking
exception.

= CHANGED COLUMNS — Use this type of locking policy to compare changed
fields in the table in the WHERE clause during an update operation. If any field
has been changed, EclipseLink will throw an optimistic locking exception.

Note: performing the same during a delete operation will only compare
primary keys.

= SELECTED COLUMNS — Use this type of locking policy to compare selected
fields in the table in the WHERE clause during an update or a delete operation.
If any field has been changed, EclipseLink will throw an optimistic locking
exception.

Note: specified fields must be mapped and must not be primary keys.
Note: EclipseLink will throw an exception if you set the

SELECTED_COLUMNS type, but fail to specify the selectedColumns.
You must also specify the name attribute of the Column.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

107 of 186

®» VERSION COLUMN — Use this type of locking policy to compare a single
version number in the WHERE clause during an update operation.

Note: the version field must be mapped and must not be the primary key.

Note: this functionality is equivalent to the functionality of the @Version
annotation (see Section 9.1.17 "Version Annotation" of the JPA Specification
(http://jep.org/en/jsr/detail?id=220)) in JPA. If you use this option, you must
also provide the @Version annotation on the version field or property.

For more information, see What You May Need to Know About Version
Fields.

selectedColumns

Set this attribute to an array of javax.persistence.Column instances.

For an optimistic locking policy of type SELECTED COLUMNS, this annotation
member becomes a required field.

Note: EclipseLink will throw an exception if you set the SELECTED COLUMNS
type, but fail to specify the selectedColumns. You must also specify the name
attribute of the Column.

cascade

Set the value of this attribute to a boolean value of true to specify that the
optimistic locking policy should cascade the lock.

By enabling cascading you configure EclipseLink to automatically force a version
field update on a parent object when its privately owned child object's version field
changes.

Note: In the current release, only supported with VERSION COLUMN locking.
For more information, see the following:

m Optimistic Version Locking Policies and Cascading
= Configuring Optimistic Locking Policy Cascading

Note: Setting an @0OptimisticLocking may override any @Version
specification (see Section 9.1.17 "Version Annotation" of the JPA Specification
(http://jcp.org/en/jsr/detail?7id=220)) on the entity: EclipseLink will not throw an
exception, but will log a warning.

You can specify @Version without any @OptimisticLocking specification to
define a version locking policy
(org.eclipse.persistence.descriptors.VersionLockingPolicy)

on the source entity.

This example shows how to use the @OptimisticLocking annotation with the ALL COLUMNS type.

Usage of the @OptimisticLocking Annotation - ALL COLUMNS

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

108 of 186

\@Entity

I8Table (name="EMPLOYEE")

1 . . . L . .
\@OptimisticLocking (type=OptimisticLockingType.ALL COLUMNS)
public class Employee implements Serializable(

1

1 private Integer id;

: private String firstName;
: private String lastName;
1
1
1

The following example shows how to use the @0ptimisticLocking annotation with the
CHANGED COLUMNS type.

Usage of the @OptimisticLocking Annotation - CHANGED COLUMNS

1@Entity

I@Table (name="EMPLOYEE")
:@OptimisticLocking(type:OptimisticLockingType.CHANGED_COLUMNS)
Public class Employee implements Serializable({

1

1 private Integer id;

: private String firstName;

: private String lastName;
1
1
1

The following example shows how to use the @OptimisticLocking annotation with the
SELECTED COLUMNS type.

Usage of the @OptimisticLocking Annotation - SELECTED COLUMNS

1@Entity
iI@Table (name="EMPLOYEE")
:@OptimisticLocking(

1 type=OptimisticLockingType.SELECTED COLUMNS,
selectedColumns={@Column (name="1d"), @Column (name="lastName") }

)
public class Employee implements Serializable{

@Id

private Integer id;
private String lastName;
private String lastName;

The following example shows how to use the @0OptimisticLocking annotation with the
VERSION COLUMN type.

Usage of the @OptimisticLocking Annotation - VERSION COLUMN

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

109 of 186

\@Entity

I8Table (name="EMPLOYEE")
:@OptimisticLocking(type:OptimisticLockingType.VERSION_COLUMN, cascade=true)
:public class Employee implements Serializable{

1
! private String firstName;

: private String lastName;

: @Version private int version;
1

1

1

Using EclipseLink JPA Extensions for Stored Procedure Query

EclipseLink defines the following stored procedure query annotations:

® @NamedStoredProcedureQuery
m @StoredProcedureParameter
m @NamedStoredProcedureQueries

You can execute a stored procedure query like any other named query (see Named Queries). For more
information, see Queries.

How to Use the @NamedStoredProcedureQuery Annotation

Use the @NamedStoredProcedureQuery to define queries that call stored procedures as named
queries.

:@Target({TYPE})

\@Retention (RUNTIME)

ipublic @interface NamedStoredProcedureQuery f{
String name () ;

String procedureName () ;

QueryHint[] hints () default {};

Class resultClass () default void.class;

String resultSetMapping () default "";

boolean returnsResultSet () default false;
StoredProcedureParameter[] parameters () default {};

This table lists attributes of the @NamedStoredProcedureQuery annotation.

Attributes of the @NamedStoredProcedureQuery Annotation

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Attribute Description Default

name Set this attribute to the unique String name that no default
references this stored procedure query.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

110 of 186

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

hints Set this attribute to an array of empty QueryHint array
javax.persistence.QueryHint instances.

resultClass Set this attribute to the Class of the query result. void.class

resultSetMapping|Set this attribute to the St ring name of the empty String
javax.persistence.SQLResultSetMapping
instance.

procedureName Set this attribute to the St ring name of the stored no default
procedure.

returnsResultSet|Set this attribute to the boolean value of false to |true
disable the return of the result set.

parameters Set the value of this attribute to an array of empty

@StoredProcedureParameter instances to
define arguments to the stored procedure.

StoredProcedurePara

array

This example shows how to use the @NamedStoredProcedureQuery annotation.

Usage of the @NamedStoredProcedureQuery Annotation

1
@Entity

\@Table (name="EMPLOYEE")
1lNamedStoredProcedureQuery (

parameters={

)
1
:public class Employee

name="ReadEmployee",
procedureName="Read Employee",

@SstoredProcedureParameter (queryParamater="EMP_ID")}

implements Serializable({

How to Use the @StoredProcedureParameter Annotation

Use the @StoredProcedureParameter annotation within a @NamedStoredProcedureQuery annotation
to define arguments to the stored procedure.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

111 of 186

ETarget({H
IlRetention (RUNTIME)

:public @interface StoredProcedureParameter {
1 String queryParameter () ;

Direction direction() default IN;

int jdbcType () default -1;

String name () default "";
Class type () default void.class;

1
1
1
: String jdbcTypeName () default "";
1
1
1
1
1

This table lists attributes of the @StoredProcedureParameter annotation.

Attributes of the @StoredProcedureParameter Annotation

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Attribute

Description

Default

queryParameter

Set this attribute to the St ring query parameter name.

no defaul

direction

Set the value of this attribute to define the
direction(org.eclipse.persistence.annotations.Direction
enumerated type) of the stored procedure parameter.

The following are valid values for Direction. IN:

IN — Input parameter.

OUT — Output parameter.

IN OUT — Input and output parameter.

OUT_CURSOR — Output cursor.

Note: EclipseLink will throw an exception if you set more than one
parameter to the OUT CURSOR type.

empty
Direct:

name

Set this attribute to the String name of the stored procedure parameter.

mwn

type

Set this attribute to the type of Java Class that you want to receive back
from the procedure. This depends on the type returned from the procedure.

void.c:

JjdbcType

Set this attribute to the int value of JDBC type code. This depends on the
type returned from the procedure.

1
—_—

JjdbcTypeName

Set this attribute to the String value of the JDBC type name.
Note: setting of this attribute may be required for ARRAY or STRUCT

types.

The Usage of the @NamedStoredProcedureQuery Annotation example shows how to use the
@StoredProcedureParameter annotation.

For more information, see the following:

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

m StoredProcedureCall
= Using a StoredProcedureCall
m Call Queries

How to Use the @NamedStoredProcedureQueries Annotation

Use the @NamedStoredProcedureQueries to define queries that call stored procedures as named
queries.

1

@Target ({TYPE})

\@Retention (RUNTIME)

public @interface NamedStoredProcedureQueries ({
: NamedStoredProcedureQuery[] value();

This table lists attributes of the @NamedStoredProcedureQueries annotation.

Attributes of the @NamedStoredProcedureQueries Annotation

Required or
Attribute | Description Default |Optional
value |Set this attribute to the array of the no required
@NamedStoredProcedureQuery annotations. default

Using EclipseLink JPA Extensions for JDBC

EclipseLink JPA provides persistence unit properties that you can define in a persistence.xml file to
configure how EclipseLink will use the connections returned from the data source used. These properties are
divided into the two following categories:

= Options that you can use to configure how EclipseLink communicates with the JDBC connection (see
How to Use EclipseLink JPA Extensions for JDBC Connection Communication).

m Options that you can use to configure EclipseLink own connection pooling (see How to Use
EclipseLink JPA Extensions for JDBC Connection Pooling).

How to Use EclipseLink JPA Extensions for JDBC Connection Communication
This table lists the EclipseLink JPA persistence unit properties that you can define in a

persistence.xml file to configure how EclipseLink communicates with the JDBC connection.

EclipseLink JPA Persistence Unit Properties for JDBC Connection Communication

112 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Property Usage

eclipselink.jdbc.bind-
parameters

Control whether or not the query uses parameter bindingl.

For more information, see How to Use Parameterized SQL (Paramet
Caching for Optimization.

The following are the valid values:

®m true — bind all parameters.
= false — do not bind parameters.

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitProper
:propertiesMap.put(PersistenceUnitProperties.JDBCiBINDiPARAM

eclipselink.jdbc.native-sql|Enable or disable EclipseLink's generation of database platform-spe
2
SQL).

The following are the valid values:

® true — enable EclipseLink's generation of database platforn
m false — disable generation of database platform-specific S

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitProper
:propertiesMap.put(PersistenceUnitProperties.NATIVE_SQL, "tr

eclipselink.jdbc.batch-

Specify the use of batch writing to optimize transactions with multip
writing

Set the value of this property into the session at deployment time.

The following are the valid values for the use ina persistence.
org.eclipse.persistence.config.BatchWriting:

m JDBC — use JDBC batch writing.
m Buffered — do not use either JDBC batch writing nor nativ
m Oracle-JDBC — use both JDBC batch writing and Oracle r

113 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Use OracledJdDBC in your property map.
® None — do not use batch writing (turn it off).

Note: if you set any other value, EclipseLink will throw an exceptio

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitProper
:propertiesMap.put(PersistenceUnitProperties.BATCH7WRITING,

eclipselink.jdbc.cache-
statements

Enable or disable EclipseLink internal statement caching.2
Note: we recommend enabling this functionality if you are using Ecl
The following are the valid values:

m true — enable EclipseLink's internal statement caching,
m false — disable internal statement caching.

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitProper
:propertiesMap.put(PersistenceUnitProperties.CACHEisTATEMENT

eclipselink.jdbc.cache-

The number of statements held when using internal statement cachin
statements.size

Set the value at the deployment time.

Valid values: 0 to Integer .MAX VALUE (depending on your JD]

Example: persistence.xml file

Example: property Map

114 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

1.
Jimport org.eclipse.persistence.config.PersistenceUnitProper
:propertiesMap.put(PersistenceUnitProperties.CACHE_STATEMENT

eclipselink.jdbc.exclusive-|Specify when a write connection is acquired lazily. For more inform
connection.is-lazy Acquisition.

The following are the valid values:

® true - aquire the write connection lazily.
m false - do not aquire the write connection lazily.

For more information, see Configuring Connection Policy.

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitProper
:propertiesMap.put(PersistenceUnitProperties.EXCLUSIVE7CONNE

eclipselink. jdbc.exclusive-|Specify when EclipseLink should perform reads through a write con
connection.mode Exclusive Write Connections.

You can set this property while creating either an EntityManagerFac
createEntityManagerFactory method, or in the persiste
EntityManager (in the map passed to the createEntityMan
overrides the former.

The following are the valid values for the use ina persistence.
org.eclipse.persistence.config.ExclusiveConnec

m Transactional - Create an isolated client session (see Is

entities require isolated cache 4 ; otherwise, create a client se
Note: EclipseLink keeps the connection exclusive for the dur
transaction, EclipseLink performs all writes and reads throug
outside the Eclipelink transaction, a new connection is acquit
read and released back immediately after the query is execut
B ITsolated - Create an exclusive isolated client session if re
raise an error.
Note: EclipseLink keeps the connection exclusive for the life
EntityManager. Inside the transaction, EclipseLink perfo
exclusive connection. However, outside the Eclipelink transa
through the exclusive connection; for nonisolated entities, a n
connection pool for each read and released back immediately
m Always - Create an exclusive isolated client session (see Is:
isolated Entity; otherwise, create an exclusive client sessic

115 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Note: EclipseLink keeps the connection exclusive for the life
and performs all writes and reads through the exclusive conn

For more information, see Configuring Connection Policy.

Example: persistence.xml file

L
[import org.eclipse.persistence.config.PersistenceUnitProper
:propertiesMap.put(PersistenceUnitProperties.EXCLUSIVE7CONNE

eclipselink.jdbc.driver The class name of the JDBC driver you want to use, fully qualified
be on your application classpath.3

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitProper
propertiesMap.put(PersistenceUnitProperties.JDBCiDRIVER, "o

eclipselink.jdbc.password |The password for your JDBC user.’

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitProper
propertiesMap.put(PersistenceUnitProperties.JDBCiPASSWORD,

eclipselink.jdbc.url The JDBC connection URL required by your JDBC driver.’

Example: persistence.xml file

116 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

117 of 186

:import org.eclipse.persistence.config.PersistenceUnitProper
:propertiesMap.put(PersistenceUnitProperties.JDBCiURL, "jdbc

eclipselink.jdbc.user The user name for your JDBC user.’

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitProper
:propertiesMap.put(PersistenceUnitProperties.JDBCiUSER, "sco

! This property applies when used in a Java SE environment.
2 This property applies when used both in a Java SE and Java EE environment.

3 This property applies when used in a Java SE environment or a resource-local persistence unit (see Section
5.5.2 "Resource-Local Entity Managers" and Section 6.2.1.2 "transaction-type" of the JPA Specification
(http://jep.org/en/jsr/detail ?id=220)).

*To do this, set the eclipselink.cache.shared.<ENTITY> property for one or more entities to
false; Use the eclipselink.cache.shared.default property if you want to use the isolated
cache for all entities.

For information about the use of annotations as opposed to persistence unit properties and vice versa, see the
following:

= What You May Need to Know About Overriding Annotations in JPA
= What You May Need to Know About EclipseLink JPA Overriding Mechanisms.

For more information about persistence unit properties, see What You May Need to Know About Using
EclipseLink JPA Persistence Unit Properties.

How to Use EclipseLink JPA Extensions for JDBC Connection Pooling

This table lists the EclipseLink JPA persistence unit properties that you can define in a
persistence.xmnl file to configure EclipseLink internal connection pooling.

EclipseLink JPA Persistence Unit Properties for JDBC Connection Pooling

Property Usage

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

eclipselink.jdbc.read- |The maximum number of connections allowed in the JDBC read connectic
connections.max

Valid values: 0 to Integer .MAX VALUE (depending on your JDBC dri

Example: persistence.xml file

import org.eclipse.persistence.config.PersistenceUnitProperties;
PropertiesMap.put(PersistenceUnitProperties.JDBCiREAD7CONNECTIONE

eclipselink.jdbc.read- |The minimum number of connections allowed in the JDBC read connectio
connections.min

Valid values: 0 to Integer.MAX VALUE (depending on your JDBC dri

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitProperties;
FropertiesMap.put(PersistenceUnitProperties.JDBC_READ_CONNECTIONS

eclipselink.jdbc.read- |gpecify whether or not to allow concurrent use of shared read connections
connections.shared

The following are the valid values:

m true — allow concurrent use of shared read connections.
m false — do not allow the concurrent use of shared read connectio
readers are each allocated their own read connection.

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitProperties;
propertiesMap.put(PersistenceUnitProperties.JDBCiREAD7CONNECTIONE

118 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

eclipselink.jdbc.write-|The maximum number of connections allowed in the JDBC write connecti
connections.max

Valid values: to Integer .MAX VALUE (depending on your JDBC driv

Example: persistence.xml file

import org.eclipse.persistence.config.PersistenceUnitProperties;
propertiesMap.put(PersistenceUnitProperties.JDBC7WRITE7CONNECTIOI

eclipselink.jdbc.write-|The maximum number of connections allowed in the JDBC write connecti
connections.min

Valid values: 0 to Integer.MAX VALUE (depending on your JDBC dri

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitProperties;
propertiesMap.put(PersistenceUnitProperties.JDBC_WRITE_CONNECTIOI

! This property applies when used in a Java SE environment.
For information about the use of annotations as opposed to persistence unit properties and vice versa, see the
following:

= What You May Need to Know About Overriding Annotations in JPA
= What You May Need to Know About EclipseLink JPA Overriding Mechanisms.

For more information about persistence unit properties, see hat You May Need to Know About Using
EclipseLink JPA Persistence Unit Properties.

Using EclipseLink JPA Extensions for Logging

This table lists the EclipseLink JPA persistence unit properties that you can define in a
persistence.xml file to configure EclipseLink logging. Additional information (including examples) is

119 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

available in How to configure a custom logger in JPA.

EclipseLink JPA Persistence Unit Properties for Logging

Property Usage

eclipselink.logging.logger Select the type of logger to use.

The following are the valid values for the use in the persiste
org.eclipse.persistence.config.Persistencel

m DefaultLogger — the EclipseLink native logger
org.eclipse.persistence.logging.Defaul
m JavaLogger —the java.util.logging logger
org.eclipse.persistence.logging.Javalo
m ServerLogger —the java.util.logging logger
org.eclipse.persistence.platform.serve
application server's logging as define in the
org.eclipse.persistence.platform.serve
m Fully qualified class name of a custom logger. The custc
org.eclipse.persistence.logging.Sessio

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitPr«
:propertiesMap .put (PersistenceUnitProperties.LOGGING LOG(

eclipselink.logging.level Control the amount and detail of log output by configuring the 1
information).

The following are the valid values for the use in the persiste
java.util.logging.Level:

m OFF — disables logging.
You may want to set logging to OFF during production t
®m SEVERE — logs exceptions indicating that EclipseLink c:
generated during login. This includes a stack trace.
® WARNING — logs exceptions that do not force EclipseLir
logged with severe level. This does not include a stack t
®m INFO — logs the login/logout per sever session, including
session, detailed information is logged.
®m CONFIG — logs only login, JDBC connection, and datab:
You may want to use the CONFIG log level at deployme
m FINE — logs SQL.
You may want to use this log level during debugging anc
= FINER — similar to WARNING. Includes stack trace.
You may want to use this log level during debugging anc

120 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

®m FINEST - includes additional low level information.
You may want to use this log level during debugging anc
m ALL — logs at the same level as FINEST.

Example: persistence.xml file

:import java.util.logging.Level;
\import org.eclipse.persistence.config.PersistenceUnitPr«
:propertiesMap.put(PersistenceUnitProperties.LOGGING_LEV]

eclipselink.logging.timestamp |Control whether the timestamp is logged in each log entry.
The following are the valid values:
® true — loga timestamp.

m false —do not log a timestamp.

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitPr«
:propertiesMap.put(PersistenceUnitProperties.LOGGINGiTIM

eclipselink.logging.thread Control whether a thread identifier is logged in each log entry.
The following are the valid values:

® true — log a thread identifier.
®m false — do not log a thread identifier.

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitPr«
:propertiesMap.put(PersistenceUnitProperties.LOGGINGiTHR

121 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

eclipselink.logging.session

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Control whether an EclipseLink session identifier is logged in e
The following are the valid values:

m true — log an EclipseLink session identifier.
m false —do not log an EclipseLink session identifier.

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitPr¢
:propertiesMap.put(PersistenceUnitProperties.LOGGINGisES

eclipselink.logging.exceptions

Control whether the exceptions thrown from within the Eclipsel
exception to the calling application. Ensures that all exceptions
application code.

The following are the valid values:

® true — log all exceptions.
m false — do not log exceptions.

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitPr«
:propertiesMap.put(PersistenceUnitProperties.LOGGING_EXC

eclipselink.logging.file

Specify a file location for the log output (instead of the standar
Valid values: a string location to a directory in which you have

relative to your current working directory or absolute.

Example: persistence.xml file

Example: property Map

122 of 186

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

:import org.eclipse.persistence.config.PersistenceUnitPr«
:propertiesMap.put(PersistenceUnitProperties.LOGGING_FIL

! This property applies when used in a Java SE environment.

For information about the use of annotations as opposed to persistence unit properties and vice versa, see the
following:

= What You May Need to Know About Overriding Annotations in JPA
= What You May Need to Know About EclipseLink JPA Overriding Mechanisms.

For more information about persistence unit properties, see What You May Need to Know About Using
EclipseLink JPA Persistence Unit Properties.

Using EclipseLink JPA Extensions for Session, Target Database and
Target Application Server

This table lists the EclipseLink JPA persistence unit properties that you can define in a
persistence.xml file to configure EclipseLink extensions for session, as well as the target database and
application server.

EclipseLink JPA Persistence Unit Properties for Database, Session, and Application Server

Property Usage

eclipselink.session-name Specify the name by which the Eclipsel
need to access the EclipseLink shared s
session configured through an EclipseLi

Valid values: a valid EclipseLink sessic

Example: persistence.xml file

:import org.eclipse.persistence.cont
:propertiesMap.put(PersistenceUnitPl

eclipselink.sessions-xml Specity persistence information loaded

You can use this option as an alternativ
EclipseLink will override all class anno
well as ORM. xm1 and other mapping fi
About EclipseLink JPA Overriding Me«

123 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Indicate the session by setting the ec1i
Note: If you do not specify the value fo

Valid values: the resource name of the «

Example: persistence.xml file

:import org.eclipse.persistence.cont
:propertiesMap.put(PersistenceUnitPl

eclipselink.session-event-listener Specify a descriptor event listener to be
For more information, see Obtaining an

Valid values: qualified class name for a
org.eclipse.persistence.ses

Example: persistence.xml file

:import org.eclipse.persistence.cont
:propertiesMap.put(PersistenceUnitPl

eclipselink.session.include.descriptor.queries|Enable or disable the default copying o:
include the ones defined using Eclipsel

The following are the valid values:

®m true — enable the default copyi
m false — disable the default cop

Example: persistence.xml file

Example: property Map

124 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

125 of 186

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

:import org.eclipse.persistence.cont
:propertiesMap.put(PersistenceUnitP1

eclipselink.target-database

Specify the type of database that your J

The following are the valid values for tl
org.eclipse.persistence.cor

®B Attunity — configure the persi
m Auto — EclipseLink accesses the
target database. Applicable to JI
® Cloudscape — configure the p
Database — configure the pers;
here and your JDBC driver does
DB2 — configure the persistence
DB2Mainframe — configure th
DBase — configure the persisten
Derby — configure the persisten
HSQL — configure the persistence
Informix — configure the persi
JavaDB — configure the persiste
MySQL — configure the persisten
Oracle — configure the persiste
PointBase — configure the per
PostgreSQL — configure the p«
SQLAnywhere — configure the
SQLServer — configure the per
Sybase — configure the persiste
TimesTen — configure the pers;

You can also set the value to the fully ¢
org.eclipse.persistence.ple

Example: persistence.xml file

:import org.eclipse.persistence.cont
[lmport org.eclipse.persistence.cont
:propertiesMap.put(PersistenceUnitP1

eclipselink.target-server

Specify the type of application server tl

The following are the valid values for tl
org.eclipse.persistence.cor

® None — configure the persistence

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

126 of 186

®m WebLogic — configure the persi
Note: this server sets this proper
WebLogic 9 — configure the p
WebLogic 10 — configure the

0OC4J — configure the persistence
SunAS9 — configure the persiste
Note: this server sets this proper
WebSphere — configure the per
WebSphere 6 1 — configure t
JBoss — configure the persisten
Fully qualified class name of a ¢
org.eclipse.persistenc

Example: persistence.xml file

limport org.eclipse.persistence.cont
[import org.eclipse.persistence.cont
:propertiesMap .put (PersistenceUnitP:

For information about the configuration of platforms, see the following:

Target Platforms

Integrating EclipseLink with an Application Server
Projects and Platforms

Database Platforms

For information about the use of annotations as opposed to persistence unit properties and vice versa, see the
following:

= What You May Need to Know About Overriding Annotations in JPA
= What You May Need to Know About EclipseLink JPA Overriding Mechanisms.

For more information about persistence unit properties, see What You May Need to Know About Using
EclipseLink JPA Persistence Unit Properties.

Using EclipseLink JPA Extensions for Schema Generation

This table lists the EclipseLink JPA persistence unit properties that you can define in a
persistence.xml file to configure schema generation.

EclipseLink JPA Persistence Unit Properties for Schema Generation

Property Usage

eclipselink.ddl- Specify what Data Definition Language (DDL) generation action you wa

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

generation target, see eclipselink.ddl-generation.output-mode.
The following are the valid values for the use ina persistence.xml

®m none — EclipseLink does not generate DDL; no schema is genera

m create-tables — EclipseLink will attempt to execute a CRE2
EclipseLink will follow the default behavior of your specific data
TABRLE SQL is issued for an already existing table). In most case
EclipseLink will then continue with the next statement. (See also «

®m drop-and-create-tables — EclipseLink will attempt to DF
encountered, EclipseLink will follow the default behavior of your
continue with the next statement. (See also eclipselink.cre
eclipselink.drop-ddl-jdbc-file-name.)

The following are the valid values for the org.eclipse.persistel

m NONE — see none.
m CREATE ONLY —see create—-tables.
m DROP AND CREATE —see drop-and-create-tables.

If you are using persistence in a Java SE environment and would like to
define a Java system property INTERACT WITH DB and set its value

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitProperties
PropertiesMap.put(PersistenceUnitProperties.DDL_GENERATION, Per

eclipselink.application-|Specify where EclipseLink should write generated DDL files (see ec1i
location eclipselink.drop-ddl-jdbc-file-name). Files are written if
other than none.

Valid values: a file specification to a directory in which you have write :

current working directory or absolute. If it does not end in a file separatc
system.

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitProperties
propertiesMap.put(PersistenceUnitProperties.APPiLOCATION, "C:\d

127 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

eclipselink.create- Specify the file name of the DDL file that EclipseLink generates contain
ddl-jdbc-file-name file is written to the location specified by eclipselink.applicat:
generationis setto create-tables or drop-and-create-t.

Valid values: a file name valid for your operating system. Optionally, y¢
concatenation of eclipselink.application-location +ecl:
file specification for your operating system.

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitProperties
PropertiesMap.put(PersistenceUnitProperties.CREATEiJDBciDDLiFIL

eclipselink.drop- Specify the file name of the DDL file that EclipseLink generates contain
ddl-jdbc-file-name file is written to the location specified by eclipselink.applicat:
generation is set to drop—and-create-tables.

Valid values: a file name valid for your operating system. Optionally, yc
concatenation of eclipselink.application-location +ecl:
file specification for your operating system.

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitProperties
PropertiesMap.put(PersistenceUnitProperties.DROPiJDBciDDLiFILE,

eclipselink.ddl- Use this property to specify the DDL generation target.
generation.output-mode
The following are the valid values for the use in the persistence.xr

® both — generate SQL files and execute them on the database.
Ifeclipselink.ddl-generation is setto create-tab!
file-name is writtento eclipselink.application-1lo
Ifeclipselink.ddl-generation is setto drop—-and-c:
ddl-jdbc-file-name and eclipselink.drop-ddl-jc
eclipselink.application-location and both SQL file

®m database — execute SQL on the database only (do not generate

®m sgl-script — generate SQL files only (do not execute them or

128 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

129 of 186

Ifeclipselink.ddl-generation issetto create-tab!
file-name is writtento eclipselink.application-1lo
Ifeclipselink.ddl-generation is setto drop—-and-c:
ddl-jdbc-file-name and eclipselink.drop-ddl-jc
eclipselink.application-location. Neither is execu

The following are the valid values for the org.eclipse.persiste:l

» DDL_BOTH GENERATION - see both.
» DDL_DATABASE GENERATION - see database.
m DDL_SQL SCRIPT GENERATION —see sql-script.

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistenceUnitProperties
I’propertiesMap .put (PersistenceUnitProperties.DDL GENERATION MODE

For information about the use of annotations as opposed to persistence unit properties and vice versa, see the
following:

= What You May Need to Know About Overriding Annotations in JPA
® What You May Need to Know About EclipseLink JPA Overriding Mechanisms.

For more information about persistence unit properties, see What You May Need to Know About Using
EclipseLink JPA Persistence Unit Properties.

Using EclipseLink JPA Extensions for Tracking Changes

Within a transaction, EclipseLink automatically tracks entity changes.
EclipseLink defines one annotation for tracking changes — @ChangeTracking annotation.

EclipseLink also provides a number of persistence unit properties that you can specify to configure
EclipseLink change tracking (see How to Use the Persistence Unit Properties for Change Tracking). These
properties may compliment or provide an alternative to the usage of annotations.

Note: Persistence unit properties always override the corresponding annotations'
attributes. For more information, see What You May Need to Know About Overriding
Annotations in JPA and What You May Need to Know About Using EclipseLink JPA
Persistence Unit Properties.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

For more information, see Unit of Work and Change Policy.

How to Use the @ChangeTracking Annotation

Use the @ChangeTracking (http://www.eclipse.org/eclipselink/api/1

/org/eclipse/persistence/annotations/ChangeTracking.html)

unit of work's change policy.

1

1@Target ({TYPE})

\@Retention (RUNTIME)

ipublic @interface ChangeTracking {

ChangeTrackingType value () default AUTO;

Note: This is an optimization feature that lets you tune the way EclipseLink detects
changes. You should choose the strategy based on the usage and data modification
patterns of the entity type as different types may have different access patterns and
hence different settings, and so on.

For more information, see the following:

= Optimizing the Unit of Work
m Read Optimization Examples
= Write Optimization Examples

This table lists attributes of the @ChangeTracking annotation.

Attributes of the @ChangeTracking Annotation

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

.0
annotation to set the

Attribute

Description

Default

value

Set this attribute to the type of the change tracking
(org.eclipse.persistence.annotations.ChangeTrackingType
enumerated type) to use.

The following are the valid values for the ChangeTrackingType:

= ATTRIBUTE — This option uses weaving to detect which fields or
properties of the object change. This is the most efficient option, but you
must enable weaving to use it.

For more information, see Attribute Change Tracking Policy.

m OBJECT — This option uses weaving to detect if the object has been
changed, but uses a backup copy of the object to determine what fields or
properties changed. This is more efficient than the DEFERRED option, but
less efficient than the ATTRIBUTE option. You must enable weaving to

ChangeTrack

130 of 186

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

131 of 186

use this option. This option supports additional mapping configuration to
attribute.

For more information, see Object-Level Change Tracking Policy.

m DEFERRED — This option defers all change detection to the
UnitOfWork's change detection process. This option uses a backup
copy of the object to determine which fields or properties changed. This
is the least efficient option, but does not require weaving and supports
additional mapping configurations to attribute and object.

For more information, see Deferred Change Detection Policy.

m AUTO — This option does not set any change tracking policy. The policy
is determined by the EclipseLink agent: if the class can be weaved for
change tracking the ATTRIBUTE option is used; otherwise, the
DEFERRED option is used.

AUTO is the only change tracking value where EclipseLink chooses the
value; any other value will explicitly cause EclipseLink to use that value,
so if you decide to explicitly set it, you must set it correctly and use your
model correctly to ensure the change tracking detects your changes.

Note: For every option, objects with changed attributes will be processed at the
commit time to include any changes in the results of the commit. Unchanged
objects will be ignored.

Note: The weaving of change tracking is the same for attribute and object change
tracking.

For information about the relationship between the value attribute and
eclipselink.weaving.changetracking property, see What You May
Need to Know About the Relationship Between the Change Tracking Annotation
and Persistence Unit Property

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

This example shows how to use the @ChangeTracking annotation.

Usage of @ChangeTracking Annotation

\@Entity

I@Table (name="EMPLOYEE")

:@Chanquracking(OBJECT) (

:public class Employee implements Serializable {

How: fool/senthieuRettsi stetboee EnieProperties forClrangth Treaokingg:

This falﬂ%til@%§t%ﬁef"ﬁé‘i1§1§V&4&@ﬁ¥ﬁ?ﬁf§ﬁ%ﬁ@§im§t§0mg@ﬁne ilr; apers istence.xml file to configure
alize

le temporals or mutable seri mappings);

Eclip'seﬂ%?lgﬁaﬁ\é%eﬁééﬂf&?s muta

® non-lazy collection mappings.

B AR AR SASHIRG WP dpisst AbisF RIngesFagRifjyouch reflection or

direct field access to fields mapped as properties.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

132 of 186

Property Usage

eclipselink.weaving.changetracking|Enable or disable the AttributeLevelChangeTrac
The following are the valid values:

®m true —enable the AttributeLevelChangeT
When enabled, only classes with all mappings allo
change tracking enabled.
m false —disable the AttributelLevelChange
Use this setting if the following applies:
® you cannot weave at all;
= you do not want your classes to be changed
for debugging purposes);
® you wish to disable this feature for configur
example, you are mutating the java.util
java.util.Calendar, you are using pi
the underlying instance variables).

Note: you may set this option only if the eclipselink
true. The purpose of the eclipselink.weaving.c
provide more granular control over weaving.

For more information, see the following:
= Using EclipseLink JPA Weaving
= Configuring Change Policy

Example: persistence.xml file

:import org.eclipse.persistence.config.PersistencelU
:propertiesMap .put (PersistenceUnitProperties.WEAVIN

For information about the relationship between the value attribute of the @ChangeTracking annotation
and eclipselink.weaving.changetracking property, see What You May Need to Know About
the Relationship Between the Change Tracking Annotation and Persistence Unit Property.

For information about the use of annotations as opposed to persistence unit properties and vice versa, see the
following:

= What You May Need to Know About Overriding Annotations in JPA
= What You May Need to Know About EclipseLink JPA Overriding Mechanisms.

For more information about persistence unit properties, see What You May Need to Know About Using
EclipseLink JPA Persistence Unit Properties.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...
What You May Need to Know About the Relationship Between the Change Tracking
Annotation and Persistence Unit Property
The following table shows the dependency between the value attribute of the @ChangeTracking

annotation and the eclipselink.weaving.changetracking property (see How to Use the
Persistence Unit Properties for Change Tracking).

Relationship Between the Change Tracking Annotation and Property

@ChangeTracking(value=) | eclipselink.weaving.changetracking=|Description

ATTRIBUTE true Weave and enable attribute change tra

Even if the descriptors contain mappir
by change tracking weaving, EclipseL:
your set methods to ensure that your ¢
events for these mappings.

ATTRIBUTE false Do not weave change tracking.

You must implement the
org.eclipse.persistence.ar
interface and raise the change events.
descriptor initialization.

OBJECT true Object change tracking is used and ch

Note: Weaving is identical for object .

OBJECT false Do not weave change tracking.

You must implement the
org.eclipse.persistence.ar
interface and raise the change events.
descriptor initialization.

DEFERRED true Do not weave change tracking.

Deferred change tracking is used.

DEFERRED false Do not weave change tracking.

Deferred change tracking is used.

AUTO true Weave change tracking if the descript:
do not support change tracking.

133 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

AUTO false Do not weave change tracking.

Deferred change tracking is used.

Using EclipseLink JPA Query Customization Extensions

This section describes the following:

m How to Use EclipseLink JPA Query Hints
= How to Use EclipseLink Query API in JPA Queries

How to Use EclipseLink JPA Query Hints

The EclipseLink JPA Query Hints table lists the EclipseLink JPA query hints that you can specify when you
construct a JPA query, as the Specifying an EclipseLink JPA Query Hint example shows, or when you
specify a JPA query using the @QueryHint annotation (see Section 8.3.1 "NamedQuery Annotation" of the
JPA Specification (http://jcp.org/en/jsr/detail7id=220)), as the Specifying an EclipseLink JPA Query Hint
with @QueryHint example shows.

All EclipseLink query hints are defined in the QueryHints class in the
org.eclipse.persistence.config package.

The EclipseLink query hints include the following:

134 of 186

eclipselink.
eclipselink.
eclipselink.
eclipselink.
eclipselink.
eclipselink.
eclipselink.
eclipselink.
eclipselink.
eclipselink.
eclipselink.
eclipselink.
eclipselink.

cache-usage
query-type
jdbc.bind-parameters
pessimistic-lock
refresh
refresh.cascade
batch

join-fetch

read-only
jdbc.timeout
Jjdbc.fetch-size
Jjdbc.max-rows
result-collection-type

When you set a hint, you can set the value using the public static final field in the appropriate configuration
class inorg.eclipse.persistence.config package, including the following:

m HintValues

® CacheUsage

m PessimisticLock
B QueryType

The Specitying an EclipseLink JPA Query Hint and Specifying an EclipseLink JPA Query Hint with
@QueryHint examples show how to set the value of hint eclipselink.jdbc.bind-parameters
using the QueryHints configuration class to set the name of the hint, and the HintValues configuration
class to set the value.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Specifying an EclipseLink JPA Query Hint

1import org.eclipse.persistence.config.HintValues;

:import org.eclipse.persistence.config.QueryHints;

1

:Customer customer = (Customer)entityMgr.createNamedQuery ("findCustomerBySSN") .
! setParameter ("SSN", "123-12-1234").

setHint (QueryHints. BIND PARAMETERS, HintValues. PERSISTENCE UNIT DEFAULT) .
getSingleResult () ;

:import org.eclipse.persistence.config.HintValues;

iimport org.eclipse.persistence.config.QueryHints;
1

1
@Entity
\@NamedQuery (

1 name="findEmployeeByDept",
: query="SELECT e FROM Employee e WHERE e.dept=:deptNum",

1 hints=Q@QueryHint (name=QueryHints.BIND PARAMETERS, value=HintValues.TRUE)
' _

|)

:public class Employee implements Serializable {

Cache Usage

The eclipselink.cache-usage hint specifies how the query should interact with the EclipseLink
cache.

EclipseLink JPA uses a shared cache mechanism that is scoped to the entire persistence unit. When
operations are completed in a particular persistence context, the results are merged back into the shared
cache so that other persistence contexts can use them. This happens regardless of whether the entity manager
and persistence context are created in Java SE or Java EE. Any entity persisted or removed using the entity
manager will always be kept consistent with the cache.

For more information, see the following:

m Session Cache
= How to Use In-Memory Queries

The following are the valid values for the org.eclipse.persistence.config.CacheUsage:

m DoNotCheckCache — Always go to the database.

® CheckCacheByExactPrimaryKey — If a read-object query contains an expression where the
primary key is the only comparison, you can obtain a cache hit if you process the expression against
the object in memory

® CheckCacheByPrimaryKey — If a read-object query contains an expression that compares at least
the primary key, you can obtain a cache hit if you process the expression against the objects in
memory.

® CheckCacheThenDatabase — You can configure any read-object query to check the cache
completely before you resort to accessing the database.

B CheckCacheOnly — You can configure any read-all query to check only the parent session cache
(shared cache) and return the result from it without accessing the database.

B ConformResultsInUnitOfWork — You can configure any read-object or read-all query within
the context of a unit of work to conform the results with the changes to the object made within that unit
of work. This includes new objects, deleted objects and changed objects.

For more information, see Using Conforming Queries and Descriptors.

135 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

m UseEntityDefault — Use the cache configuration as specified by the EclipseLink descriptor API
for this entity.
Note: the entity default value is to not check the cache (DoNotCheckCache). The query will access
the database and synchronize with the cache. Unless refresh has been set on the query, the cached
objects will be returned without being refreshed from the database. EclipseLink does not support the
cache usage for native queries or queries that have complex result sets such as returning data or
multiple objects.

Default: CacheUsage.UseEntityDefault
Note: this default is DoNotCheckCache.

For more information, see Configuring Cache Usage for In-Memory Queries.

Example: JPA Query API

:import org.eclipse.persistence.config.CacheUsage;
[import org.eclipse.persistence.config.QueryHints;
:query.setHint(QueryHints.CACHE_USAGE, CacheUsage.CheckCacheOnly) ;

:import org.eclipse.persistence.config.CacheUsage;
Jimport org.eclipse.persistence.config.TargetDatabase;
:@QueryHint(name:QueryHints.CACHE_USAGE, value=CacheUsage.CheckCacheOnly) ;

The eclipselink.query-type hint specifies the EclipseLink query type to use for the query.

For most JP QL queries, the org.eclipse.persistence.queries.ReportQuery or
org.eclipse.persistence.queries.ReadAllQuery are used. The
eclipselink.query-type hint lets you use other query types, such as
org.eclipse.persistence.queries.ReadObjectQuery for queries that are know to return a
single object.

For more information, see the following:

= Object-Level Read Query
m Data-Level Modify Query

The following are the valid values for the org.eclipse.persistence.config.QueryType:

Auto — EclipseLink chooses the type of query to use.
ReadAll — Use the ReadAllQuery type for the query.
ReadObject — Use the ReadObjectQuery type for the query.
Report — Use the Report Query type for the query.

Default: QueryType.Auto

Example: JPA Query API

136 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

limport org.eclipse.persistence.config.QueryType;
:import org.eclipse.persistence.config.QueryHints;
:query.setHint(QueryHints.QUERY_TYPE, QueryType.ReadObject) ;

"import org.eclipse.persistence.config.QueryType;
\import org.eclipse.persistence.config.TargetDatabase;
:@QueryHint(name=QueryHints.QUERYiTYPE, value=QueryType.ReadObject) ;

Bind Parameters

The eclipselink.jdbc.bind-parameters hint controls whether or not the query uses parameter
binding.

For more information, see How to Use Parameterized SQL (Parameter Binding) and Prepared Statement
Caching for Optimization.

The following are the valid values for the org.eclipse.persistence.config.HintValues:

® TRUE — bind all parameters.

m FALSE — do not bind all parameters.

= PERSISTENCE UNIT DEFAULT — use the parameter binding setting made in your EclipseLink
session's database login, which is t rue by default.

For more information, see Configuring JDBC Options.
Default: HintValues. PERSISTENCE UNIT DEFAULT

Example: JPA Query API

limport org.eclipse.persistence.config.HintValues;
:import org.eclipse.persistence.config.QueryHints;
:query.setHint(QueryHints.BINDiPARAMETERS, HintValues.TRUE) ;

limport org.eclipse.persistence.config.HintValues;
:import org.eclipse.persistence.config.TargetDatabase;
:@QueryHint(name:QueryHints.BINDiPARAMETERS, value=HintValues.TRUE) ;

Fetch Size

The eclipselink.jdbc.fetch-size hint specifies the number of rows that should be fetched from

the database when more rows are needed1

For large queries that return a large number of objects you can configure the row fetch size used in the query
to improve performance by reducing the number database hits required to satisfy the selection criteria. Most
JDBC drivers default to a fetch size of 10, so if you are reading 1000 objects, increasing the fetch size to
256 can significantly reduce the time required to fetch the query's results. The optimal fetch size is not
always obvious. Usually, a fetch size of one half or one quarter of the total expected result size is optimal.
Note that if you are unsure of the result set size, incorrectly setting a fetch size too large or too small can
decrease performance.

137 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

A value of 0 means the JDBC driver default will be used.
Valid values: 0 to Integer .MAX VALUE (depending on your JDBC driver) as a String.
Default: 0

Note: this value indicates that the JDBC driver default will be used.

! This property is dependent on the JDBC driver support.
Timeout

The eclipselink.jdbc.timeout hint specifies the number of seconds EclipseLink will wait on a

query before throwing a DatabaseException1
A value of 0 means EclipseLink will never time-out a query.
Valid values: 0 to Integer.MAX VALUE (depending on your JDBC driver) as a String.

Default: 0

! This property is dependent on the JDBC driver support.
Pessimistic Lock

The eclipselink.pessimistic—1ock hint controls whether or not pessimistic locking is used.

The following are the valid values for the
org.eclipse.persistence.config.PessimisticLock:

®m NoLock — pessimistic locking is not used.
®m Lock — EclipseLink issues a SELECT FOR UPDATE.
m LockNoWait — EclipseLink issues a SELECT FOR UPDATE NO WAIT.

Default: NoLock

Example: JPA Query API

limport org.eclipse.persistence.config.PessimisticLock;
:import org.eclipse.persistence.config.QueryHints;
:query.setHint(QueryHints.PESSIMISTICiLOCK, PessimisticLock.LockNoWait) ;

limport org.eclipse.persistence.config.PessimisticLock;
:import org.eclipse.persistence.config.QueryHints;
:@QueryHint(name:QueryHints.PESSIMISTIC_LOCK, value=PessimisticLock.LockNoWait) ;

The eclipselink.batch hint supplies EclipseLink with batching information so subsequent queries of
related objects can be optimized in batches instead of being retrieved one-by-one or in one large joined read.

138 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Batch reading is more efficient than joining because it avoids reading duplicate data.
Batching is only allowed on queries that have a single object in their select clause.
Valid values: a single-valued relationship path expression.

Note: use dot notation to access nested attributes. For example, to batch-read an employee's manager's
address, specify e .manager.address

Example: JPA Query API

'import org.eclipse.persistence.config.HintValues;
\import org.eclipse.persistence.config.QueryHints;
:query.setHint("eclipselink.batch", "e.address");

:import org.eclipse.persistence.config.HintValues;
\import org.eclipse.persistence.config.QueryHints;
:@QueryHint(name:QueryHints.BATCH, value="e.address");

Join Fetch

The eclipselink.join-fetch hint allows joining of the attributes.

This is similar to eclipselink.batch: subsequent queries of related objects can be optimized in
batches instead of being retrieved in one large joined read.

This is different from JP QL joining because it allows multilevel fetch joins.
For more information, see Section 4.4.5.3 "Fetch Joins" of JPA specification.
Valid values: a relationship path expression.

Note: use dot notation to access nested attributes.

Example: JPA Query API

:import org.eclipse.persistence.config.HintValues;
\import org.eclipse.persistence.config.QueryHints;
:query.setHint("eclipselink.join—fetch", "e.address") ;

:import org.eclipse.persistence.config.HintValues;
\import org.eclipse.persistence.config.QueryHints;
:@QueryHint(name:QueryHints.FETCH, value="e.address");

The eclipselink.refresh hint controls whether or not to update the EclipseLink session cache with
objects that the query returns.

139 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

140 of 186

The following are the valid values for the org.eclipse.persistence.config.HintValues:

m TRUE — refresh cache.
m FALSE — do not refresh cache.

Default: FALSE

Example: JPA Query API

:import org.eclipse.persistence.config.HintValues;
\import org.eclipse.persistence.config.QueryHints;
:query.setHint(QueryHints.REFRESH, HintValues.TRUE) ;

limport org.eclipse.persistence.config.HintValues;
\import org.eclipse.persistence.config.QueryHints;
:@QueryHint(name=QueryHints.REFRESH, value=HintValues.TRUE) ;

Read Only

The eclipselink.read-only hint retrieves read-only results back from the query: on nontransactional
read operations, where the requested entity types are stored in the shared cache, you can request that the
shared instance be returned instead of a detached copy.

Note: you should never modify objects returned from the shared cache.
The following are the valid values for the org.eclipse.persistence.config.HintValues:

®m TRUE — retrieve read-only results back from the query;
® FALSE — do not retrieve read-only results back from the query.

Default: FALSE

Example: JPA Query API

:import org.eclipse.persistence.config.HintValues;
:import org.eclipse.persistence.config.QueryHints;
\query.setHint (QueryHints.READ ONLY, HintValues.TRUE);
1

1
limport org.eclipse.persistence.config.HintValues; 1
\import org.eclipse.persistence.config.QueryHints; :
:@QueryHint(name=QueryHints.READ ONLY, value=HintValues.TRUE) ;

- 1

Result Collection Type

The eclipselink.result-collection-type hint configures the concrete class that EclipseLink
should use to return its query result.

This lets you specify the type of collection in which the result will be returned.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Valid values: Java Class that implements the Collection interface.

Note: typically, you would execute these queries by calling the getResultsList method, which returns
the java.util.List, on the Query. This means that the class specified in this hint must implement the List
interface, if you are invoking it using the getResultsList method.

Note: specify the class without the " . class" notation. For example, java.util.Vector would work,
not java.util.Vector.classEclipseLink will throw an exception, if you use this hint with a class that
does not implement the Collection interface.

Default:java.util.Vector

Example: JPA Query API

limport org.eclipse.persistence.config.HintValues;
:import org.eclipse.persistence.config.QueryHints;
:query.setHint("eclipselink.result—collection—type", java.util.ArrayList.class);

limport org.eclipse.persistence.config.HintValues;
:import org.eclipse.persistence.config.QueryHints;
:@QueryHint(name=QueryHints.RESULT7COLLECTION7TYPE, value="java.util.ArrayList");

How to Use EclipseLink Query API in JPA Queries

EclipseLink JPA provides an EclipseLink implementation class for each JPA persistence interface. By
casting to the EclipseLink implementation class, you have full access to EclipseLink functionality.

This section provides the following examples:

Creating a JPA Query Using the EclipseLink Expressions Framework

Creating a JPA Query Using an EclipseLink DatabaseQuery

Creating a JPA Query Using an EclipseLink Call Object

Using Named Parameters in a Native Query

Using Java Persistence Query Language Positional Parameters in a Native Query
Using JDBC-Style Positional Parameters in a Native Query

For more information, see Queries.

Creating a JPA Query Using the EclipseLink Expressions Framework

EclipseLink provides an expression framework with which you can express queries in a database-neutral
fashion as an alternative to raw SQL.

This example shows how to cast an entity manager to access an EclipseLink persistence provider
createQuery method that takes an EclipseLink Expression.

Creating a Query with the EclipseLink Expressions Framework

:((org.eclipse.persistence.jpa.JpaEntityManager)entityManager.getDelegate()).
! createQuery (Expression expression, Class resultType);

141 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

EclipseLink expressions offer the following advantages over SQL when you access a database:

m Expressions are easier to maintain because the database is abstracted.

= Changes to descriptors or database tables do not affect the querying structures in the application.

= Expressions enhance readability by standardizing the Query interface so that it looks similar to
traditional Java calling conventions.
For example, the Java code required to get the street name from the Address object of the
Employee class looks like this:

m Expressions allow read queries to transparently query between two classes that share a relationship. If
these classes are stored in multiple tables in the database, EclipseLink automatically generates the
appropriate join statements to return information from both tables.

= Expressions simplify complex operations.

For example, the following Java code retrieves all employees that live on "Meadowlands" whose
salary is greater than 10,000:

o - s s s s o eSS m S mmmms—-————- 1
1

IExpressionBuilder emp = new ExpressionBuilder () ;

:Expression exp = emp.get ("address") .get ("street") .equal ("Meadowlands") ;

Wector employees = session.readAllObjects (Employee.class,

:exp.and(emp.get("salary").greaterThan(lOOOO)));

el il T it 5
1 1
:SELECT t0.VERSION, tO.ADDR ID, tO.EMP ID, tO.SALARY FROM EMPLOYEE t0, ADDRESS tl WHERE (((tl.STh

1
Uy GO0y G g O -

For more information, see Introduction to EclipseLink Expressions.

Creating a JPA Query Using an EclipseLink DatabaseQuery

An EclipseLink DatabaseQuery is a query object that provides a rich API for handling a variety of
database query requirements, including reading and writing at the object level and at the data level.

This example shows how to cast a JPA query from an entity manager to access an EclipseLink persistence
provider setDatabaseQuery method that takes an EclipseLink DatabaseQuery.

DatabaseQuery

The following example shows how to cast a JPA query from an entity manager to access an EclipseLink
persistence provider setDatabaseQuery method that takes an EclipseLink DataReadQuery initialized

142 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

with an EclipseLink SQLCall object that specifies a SELECT. This query will return one or more objects.

DatabaseQuery with Selecting Call

:((org.eclipse.persistence.jpa.JpaQuery)query).
setDatabaseQuery (new DataReadQuery(new SQLCall ("SELECT...")));

The following example shows how to cast a JPA query from an entity manager to access an EclipseLink
persistence provider setDatabaseQuery method that takes an EclipseLink DataModifyQuery
initialized with an EclipseLink SQLCall object that specifies an UPDATE. This query will modify one or
more objects; however, this query will not update the managed objects within the persistence context.

DatabaseQuery with Non-Selecting Call

:((org.eclipse.persistence.jpa.JpaQuery)query).
! setDatabaseQuery (new DataModifyQuery(new SQLCall ("UPDATE...")));

Creating a JPA Query Using an EclipseLink Call Object

Using DatabaseQuery method setCall, you can define your own EclipseLink Call to accommodate a
variety of data source options, such as SQL stored procedures and stored functions, EJB QL queries, and EIS
interactions.

This example shows how to cast a JPA query from an entity manager to access an EclipseLink persistence
provider getDatabaseQuery method to set a new SQLCall.

:((org.eclipse.persistence.jpa.JpaQuery)query).
! getDatabaseQuery () .setCall (new SQLCall("..."));

g -

For more information, see Call Queries.

Using Named Parameters in a Native Query

Using EclipseLink, you can specify a named parameter in a native query using the EclipseLink # convention
(see the Specifying a Named Parameter with # example).

Support for the EclipseLink # convention is helpful if you are already familiar with EclipseLink queries or if
you are migrating EclipseLink queries to a JPA application.

Specifying a Named Parameter with #

:Query queryEmployees = entityManager.createNativeQuery (

: "SELECT * FROM EMPLOYEE emp WHERE emp.fname LIKE #firstname");
queryEmployees.setParameter ("firstName", "Joan");

:Collection employees = queryEmployees.getResultList () ;

g -

143 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Using JP QL Positional Parameters in a Native Query

Using EclipseLink, you can specify positional parameters in a native query using the Java Persistence query
language (JP QL) positional parameter convention ?n to specify a parameter by number. For more
information on JP QL, see What You May Need to Know About Querying with Java Persistence Query
Language.

This example shows how to specify positional parameters using the ?n convention. In this example, the
query string will be SELECT * FROM EMPLOYEE WHERE F NAME LIKE "D%" AND L NAME
LIKE "C%".

Specifying Positional Parameters Using ?

1

Query queryEmployees = entityManager.createNativeQuery (

: "SELECT * FROM EMPLOYEE WHERE F NAME LIKE ?1 AND L NAME LIKE ?2", Employee.class);
IqgueryEmployees.setParameter (1, "DS%");

queryEmployees.setParameter (2, "C%");

:Collection employees = queryEmployees.getResultList ()

You can easily re-use the same parameter in more than one place in the query, as the following example
shows. In this example, the query string will be SELECT * FROM EMPLOYEE WHERE F NAME LIKE
"Ds" AND L NAME LIKE "D%".

Specifying Positional Parameters Using ?n

:Query queryEmployees = entityManager.createNativeQuery (

: "SELECT * FROM EMPLOYEE WHERE F NAME LIKE ?1 AND L NAME LIKE ?1", Employee.class);
queryEmployees.setParameter (1, "DS");

:Collection employees = queryEmployees.getResultList () ;

g -

Using JDBC-Style Positional Parameters in a Native Query

Using EclipseLink, you can specify positional parameters in a native query using the JDBC-style positional
parameter ? convention.

This example shows how to specify positional parameters using the ? convention. Each occurrence of ? must
be matched by a corresponding setParameter call. In this example, the query string will be SELECT *
FROM EMPLOYEE WHERE F NAME LIKE "D%" AND L NAME LIKE "C%".

Specifying Positional Parameters with ?

1

Query queryEmployees = entityManager.createNativeQuery (

: "SELECT * FROM EMPLOYEE WHERE F NAME LIKE ? AND L NAME LIKE ?", Employee.class);
:queryEmployees.setParameter(1, "DS") ;

queryEmployees.setParameter (2, "C%");

:Collection employees = queryEmployees.getResultList () ;

If you want to re-use the same parameter in more than one place in the query, you must repeat the same
parameter, as this example shows. In this example, the query string will be SELECT * FROM EMPLOYEE

144 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

WHERE F NAME LIKE "D%" AND L NAME LIKE "D%".

Re-Using Positional Parameters with ?

L el el b]
1

IQuery queryEmployees = entityManager.createNativeQuery (

: "SELECT * FROM EMPLOYEE WHERE F NAME LIKE ? AND L NAME LIKE ?", Employee.class);
:queryEmployees.setParameter(l, "D%") ;

queryEmployees.setParameter (2, "DS");
:Collection employees = queryEmployees.getResultList () ;

Using EclipseLink JPA Weaving

Weaving is a technique of manipulating the byte-code of compiled Java classes. The EclipseLink JPA
persistence provider uses weaving to enhance JPA entities for such things as lazy loading, change tracking,
fetch groups, and internal optimizations.

This section describes the following:

How to Configure Dynamic Weaving for JPA Entities Using the EclipseLink Agent
How to Configure Static Weaving for JPA Entities

How to Disable Weaving Using EclipseLink Persistence Unit Properties

What You May Need to Know About Weaving JPA Entities

How to Configure Dynamic Weaving for JPA Entities Using the EclipseLink Agent

Use this option to weave applicable class files one at a time, as they are loaded at run time. Consider this
option when the number of classes to weave is few or the time taken to weave the classes is short.

If the number of classes to weave is large or the time required to weave the classes is long, consider using

static weaving. For more information, see How to Configure Static Weaving for JPA Entities.

To Configure Dynamic Weaving for JPA Entities Using the EclipseLink Agent

145 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

1. Configure your persistence.xml file witha eclipselink.weaving extension set to true,
as this example shows.
Setting eclipselink.weaving in the persistence.xml File

e 1
1

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
<persistence-unit name="HumanResources">
<provider>org.eclipse.persistence.jpa.PersistenceProvider</provid
<class>com.acme.Employee</class>
<!-- -—>
<propert1es>
<property
name="eclipselink.weaving"
value="true"

/>
</properties>
</persistence-unit>
</persistence>

| W

For more information, see the EclipseLink JPA Persistence Unit Properties for Customization and
Validation table.
2. Modify your application JVM command line to include the following:

3. Ensure that the eclipselink. jar is in your application classpath.
4. Package and deploy your application.
For more information, see Packaging an EclipseLink JPA Application.

EclipseLink weaves applicable class files one at a time, as they are loaded at run time.

How to Configure Static Weaving for JPA Entities

Use this option to weave all applicable class files at build time so that you can deliver pre-woven class files.
Consider this option to weave all applicable class files at build time so that you can deliver prewoven class
files. By doing so, you can improve application performance by eliminating the runtime weaving step
required by dynamic weaving (see How to Configure Dynamic Weaving for JPA Entities Using the
EclipseLink Agent).

In addition, consider using this option to weave in Java environments where you cannot configure an agent.

Prior to weaving, your persistence unit should be set-up in a way that is understood by eclipselink. There are
two basic configurations:

1. A jar file - setup as specified in the JPA specification

m classes stored at the base in directories based on their package structure
®m a META-INF directory containing your persistence.xml. Note: Using the persistenceunitinfo setting
below, you can avoid this requirement

e.g. mypersistenceunit.jar could contain

® mypackage/MyEntityl.class
®» mypackage/MyEntity2.class
» mypackage2/MyEntity3.class

146 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

147 of 186

» META-INF/persistence.xml

2. An exploded directory structure

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

m classes stored at the base in directories based on their package structure
= a META-INF directory containing your persistence.xml. Note: Using the persistenceunitinfo setting
below, you can avoid this requirement

e.g. If your base directory was c:/classes, the exploded directory structure would look as follows:

c:/classes/mypackage/MyEntityl.class
c:/classes/mypackage/MyEntity2.class
c:/classes/mypackage2/MyEntity3.class
c:/classes/META-INF/persistence.xml

To Configure Static Weaving for JPA Entities

1. Execute the static static weaver in one of the following ways:
1. Use the weave Ant task as follows:
= Configure the weave Ant task in your build script, as this example shows. The

EclipseLink weave Ant Task Attributes table lists the attributes of this task.

EclipseLink weave Ant Task

1
</target>

:<target name="weaving" description="perform weaving" depends="define.task">

<weave source="c:\myjar.jar"

target="c:\wovenmyjar.jar"

persistenceinfo="c:\myjar-containing-persistenceinfo.jar">

<classpath>
</classpath>

</weave>
</target>

EclipseLink weave Ant Task Attributes

1
1
1
1
1
1
1 <pathelement path="c:\myjar-dependent.jar"/>
1
1
1
1
1
I
1

1
:<target name="define.task" description="New task definition for EclipselLink st
1

<taskdef name="weave" classname="org.eclipse.persistence.tools.weaving.jpa

source files to weave: either a
directory or a JAR file.

If the persistence.xml file is not
in a META-INF directory at this
location, you must specify the
location of the persistence.xml
using the persistenceinfo
attribute.

Required

or
Attribute Description Default Optional
source Specifies the location of the Java Required

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

target Specifies the output location: either a Required
directory or a JAR file.
persistenceinfo|Specifies the location of the Optional

persistence.xml file if it is not
in the same location as the source.
Note: persistence.xml should be put
in a directory called META-INF at
this location

log Specifies a logging file. See Logging. |Optional
loglevel Specifies the amount and detail of log | Level .OFF |Optional
output.
Valid

java.util.logging.Level
values are the following;

OFF
SEVERE
WARNING
INFO
CONFIG
FINE
FINER
FINEST

For more information, see Logging.

Note: If source and target point to the same location and, if the
source is a directory (not a JAR file), EclipseLink will weave in
place. If source and target point to different locations, or if the
source is a JAR file (as the EclipseLink weave Ant Task example
shows), EclipseLink cannot weave in place.

m Configure the weave task with an appropriate <classpath> element, as the
EclipseLink weave Ant Task example shows, so that EclipseLink can load all required
source classes.

m Execute the Ant task using the command line that this example shows.

In this example, the weave Ant task is in the build.xml file:
EclipseLink weave Ant Task Command Line

148 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

149 of 186

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Note: You must specify the eclipselink. jar file (the JAR that
contains the EclipseLink weave Ant task) using the Ant command
line -11b option instead of using the taskdef attribute

classpath.

2. Use the command line as follows:

java org.eclipse.persistence.tools.weaving.jpa.StaticWeave
[arguments] <source> <target>

The following example shows how to use the StaticWeave class on Windows systems. The
EclipseLink StaticWeave Class Command Line Arguments table lists the arguments of this

class.

Executing StaticWeave on the Command Line

1
:java org.eclipse.persistence.tools.weaving.jpa.StaticWeave -persistenceinfo c:\myja
1

:—classpath c:\classpathl;c:\classpath2 c:\myjar-source.jar c:\myjar-target.jar

EclipseLink StaticWeave Class Command Line Arguments

Argument

Description

Default

Required
or
Optional

-persistenceinfo

Specifies the location of the
persistence.xml file if it is not at the
same location as the source (see
—-classpath) Note: EclipseLink will
look in a META-INF directory at that
location for persistence.xml.

Optional

-classpath

Specifies the location of the Java source
files to weave: either a directory or a JAR
file. For Windows systems, use delimiter
", " and for Unix, use delimiter "

If the persistence.xml file is not in
this location, you must specify the location
of the persistence.xml using the
-persistenceinfo attribute.

Required

-log

Specifies a logging file.

See Logging.

Optional

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

150 of 186

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

-loglevel Specifies the amount and detail of log Level.OFF|Optional
output.
Valid java.util.logging.Level
values are as follows:
= OFF
m SEVERE
® WARNING
® INFO
® CONFIG
® F'TNE
® F'TNER
m FINEST
For more information, see Logging.
<source> Specifies the location of the Java source Required
files to weave: either a directory or a JAR
file.
If the persistence.xml file is not in
this location, you must specify the location
of the persistence.xml using the
-persistenceinfo attribute.
<target> Specifies the output location: either a Required
directory or a JAR file.

Note: If <source> and <target> point to the same location and if the

<source> is a directory (not a JAR file), EclipseLink will weave in

place. If <source> and <target> point to different locations, or if the
source is a JAR file (as the Executing StaticWeave on the Command
Line example shows), EclipseLink cannot weave in place.

2. Configure your persistence.xml file witha eclipselink.weaving extension set to
static, as this example shows:
Setting eclipselink.weaving in the persistence.xml File

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

151 of 186

1
<persistence>

<properties>

<property
name="eclipselink.weaving”

<persistence-unit name="HumanResources">
<class>com.acme.Employee</class>

value="static"

>

</properties>
</persistence-unit>
</persistence>

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

For more information, see the EclipseLink JPA Persistence Unit Properties for Customization and
Validation table.

3. Package and deploy your application.
For more information, see Packaging and Deploying EclipseLink JPA Applications.

How to Disable Weaving Using EclipseLink Persistence Unit Properties

To disable weaving, you use persistence unit properties.

To Disable Weaving Using EclipseLink Persistence Unit Properties

1. Configure your persistence.xml file with one or more of the following properties set to false:
weaving — disables all weaving;

eclipselink.
eclipselink.
eclipselink.
eclipselink.
eclipselink.
eclipselink.

weaving.
weaving.
weaving.
weaving.
weaving.

lazy — disables weaving for lazy loading (indirection);
changetracking — disables weaving for change tracking;
fetchgroups — disables weaving for fetch groups.
internal — disables weaving for internal optimization.

eager — disables weaving for indirection on eager relationships.

This example shows how to disable weaving for change tracking only.
Disabling Weaving for Change Tracking in the persistence.xml File

1 .
Kpersistence>

<properties>

<property
name="eclipselink.weaving.changetracking”

<persistence-unit name="HumanResources">
<class>com.acme.Employee</class>

value="false"

>

</properties>
</persistence-unit>
</persistence>

The following example shows how to disable all weaving: in this example, EclipseLink does not
weave for lazy loading (indirection), change tracking, or internal optimization.

Disabling All Weaving in the persistence.xml File

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

1
Ll

1

<persistence>

<persistence-unit name="HumanResources">
<class>com.acme.Employee</class>

<properties>
<property
name="eclipselink.weaving”
value="false"
>
</properties>
</persistence-unit>

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:</persistence>

For more information, see the EclipseLink JPA Persistence Unit Properties for Customization and
Validation table.

2. Package and and deploy your application. For more information, see Packaging and Deploying
EclipseLink JPA Applications.

What You May Need to Know About Weaving JPA Entities

The EclipseLink JPA persistence provider uses weaving to enable the following features for JPA entities:

lazy loading (indirection): see How to Configure Lazy Loading;
change tracking: see How to Configure Change Tracking;

fetch groups: see How to Configure Fetch Groups;

internal optimizations: see Optimizing the EclipseLink Application.

EclipseLink weaves all the JPA entities in a given persistence unit. That is the following:

= all classes you list in persistence.xml file;

m ifelement <exclude-unlisted-classes> is false, or deployed in Java EE, all classes in the
JAR file containing the persistence.xml file;

= all classes you list in the orm. xm1 file.

For more information, see What You May Need to Know About Weaving and Java EE Application Servers.

What You May Need to Know About EclipseLink JPA Lazy
Loading

JPA specifies that lazy loading is a hint to the persistence provider that data should be fetched lazily when it
is first accessed, if possible.

If you are developing your application in a Java EE environment, you only have to set fetch to
javax.persistence.FetchType.LAZY, and EclipseLink persistence provider will supply all the
necessary functionality.

When using a one-to-one or many-to-one mapping in a Java SE environment, to configure EclipseLink JPA to
perform lazy loading when the fetch attribute is set to FetchType.LAZY, configure either dynamic or
static weaving.

When using a one-to-one or many-to-one mapping in a Java SE environment that does not permit the use of

152 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

153 of 186

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

-javaagent on the JVM command line, to configure EclipseLink JPA to perform lazy loading when
annotation attribute fetch is set to javax.persistence.FetchType.LAZY, you can use static

weaving.

The EclipseLink JPA Support for Lazy Loading by Mapping Type table lists EclipseLink JPA support for
lazy loading by mapping type.

For more information, see the following:

EclipseLink JPA Support for Lazy Loading by Mapping Type

How to Configure Dynamic Weaving for JPA Entities Using the EclipseLink Agent
How to Configure Static Weaving for JPA Entities
How to Disable Weaving Using EclipseLink Persistence Unit Properties
What You May Need to Know About Weaving JPA Entities

Configuring Indirection (Lazy Loading)

Mapping

Java EE !

Java SE

many-to-many

EclipseLink JPA performs lazy loading when
the fetch attribute is set to
javax.persistence.FetchType.LAZY
(default).

EclipseLink JPA performs lazy loading wher
fetch attribute is set to
javax.persistence.FetchType.LA
(default).

one-to-many

EclipseLink JPA performs lazy loading when
the fetch attribute is set to
javax.persistence.FetchType.LAZY
(default).

EclipseLink JPA performs lazy loading wher
fetch attribute is set to
javax.persistence.FetchType.LA
(default).

one-to-one

EclipseLink JPA performs lazy loading when
the fetch attribute is set to
javax.persistence.FetchType.LAZY.

By default, EclipseLink JPA ignores the fef
attribute and default
javax.persistence.FetchType . EAGER app

To configure EclipseLink JPA to perform la:
loading when the fetch attribute set to
FetchType.LAZY, consider one of the
following;

= How to Configure Dynamic Weaving
JPA Entities Using the EclipseLink A

= How to Configure Static Weaving for
JPA Entities

many-to-one

EclipseLink JPA performs lazy loading when
the fetch attribute is set to
javax.persistence.FetchType.LAZY.

By default, EclipseLink JPA ignores the fef
attribute and default
javax.persistence.FetchType.EA
applies.

To configure EclipseLink JPA to perform la:
loading when the fetch attribute set to
FetchType.LAZY, configure one of the

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

154 of 186

following;

= How to Configure Dynamic Weaving
JPA Entities Using the EclipseLink A
= How to Configure Static Weaving for

Entities
basic EclipseLink JPA performs lazy loading when | By default, EclipseLink JPA ignores the fet
the fetch attribute is set to attribute and default

javax.persistence.FetchType.LAZY. |javax.persistence.FetchType . EAGER apy

To configure EclipseLink JPA to perform la:
loading when the fetch attribute set to
FetchType.LAZY, consider one of the
following;

= How to Configure Dynamic Weaving
JPA Entities Using the EclipseLink A

= How to Configure Static Weaving for
JPA Entities

! Fully supported in any container that implements the appropriate container contracts in the EJB 3.0
specification.

What You May Need to Know About Overriding Annotations in
JPA

In JPA, you override any annotation with XML in your object relational mapping files (see Overriding
Annotations with XML).

In EclipseLink JPA, you either use JPA processing, or you specify the sessions.xml file resulting in
creation of the project .xml file. For more information, see What You May Need to Know About
EclipseLink JPA Overriding Mechanisms.

Overriding Annotations with eclipselink-orm.xml File

The eclipselink-orm.xml file is the EclipseLink native metadata XML file. It can be used to override the JPA
configurations defined in the JPA orm.xml file. This exclipselink-orm.xml file provides access to the the
advanced features provided by the EclipseLink XSD (http://www.eclipse.org/eclipselink
/xsds/eclipselink_orm 1 _0.xsd).

See this page for more information and examples.
Overriding Annotations with XML

In JPA, you can use XML mapping metadata on its own, or in combination with annotation metadata, or you
can use it to override the annotation metadata.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

155 of 186

If you choose to include one or more mapping XML files in your persistence unit, each file must conform and
be valid against the orm 1 0.xsd schema located at http://java.sun.com/xml/ns
/persistence/orm 1 0.xsd. This schema defines a namespace called http://java.sun.com
/xml/ns/persistence/orm that includes all of the ORM elements that you can use in your mapping
file.

All object relational XML metadata is contained within the entity-mappings root element of the
mapping file. The subelements of entity-mappings can be categorized into four main scoping and
functional groups: persistence unit defaults, mapping file defaults, queries and generators, and managed
classes and mappings. There is also a special setting that determines whether annotations should be
considered in the metadata for the persistence unit (see Disabling Annotations).

For more information and examples, see Section 10.1 "XML Overriding Rules" of the JPA Specification
(http://jcp.org/en/jsr/detail 7id=220) .

Disabling Annotations

JPA provides a mechanism that you can use to disable annotations. If you do not feel the need for
annotations in your application, you can use the xml -mapping-metadata-complete and
metadata-complete mapping file elements to disable any existing annotations. Setting this options
causes the processor to completely ignore annotations.

When you specify the xm1-mapping-metadata-complete element, all annotations in the persistence
unit will be ignored, and only mapping files in the persistence unit will be considered as the total set of
provided metadata. Only entities (see Section 8.1 "Entity" of the JPA Specification (http://jcp.org/en/jsr
/detail?1d=220)), mapped superclasses (see (@MappedSuperclass), and embedded objects (see
@Embedded) that have entries in a mapping file will be added to the persistence unit. The xm1-mapping-
metadata-complete element has to be in only one of the mapping files in the persistence unit. You
specify it as an empty subelement of the persistence-unit-metadata element, as this example
shows:

Disabling Annotations for the Persistence Unit in the Mapping File

1

Kentity-mappings>

. <persistence-unit-metadata>

: <xml-mapping-metadata-complete/>
' </persistence-unit-metadata>
1
1
1
I
1

</entity-mappings>

You can also use the metadata-complete attribute of the entity, mapped-superclass, and
embeddable elements. If you specify this attribute, all annotations on the specified class and on any fields
or properties in the class will be ignored — only metadata in the mapping file will be considered as the set of
metadata for the class. However, even though the annotations are ignored, the default mapping still applies,
so any fields or properties that should not be mapped must still be marked as transient in the XML file, as
this example demonstrates.

Disabling Annotations for a Managed Class in the Mapping File

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

g g g 4

@Entity
public class Employee {

@Id
private int id;

@Column (name="EMP NAME")
private String name;

@Column (name="SALARY")
private long salary;

<entity-mappings>
<entity class="mypackage.Employee" '''metadata-complete="true"'''>
<attributes>
<id name="id"/>

</attributes>
</entity>

</en£i£y-mappings>
In the preceding example, the entity mappings in the annotated class are disabled by the metadata-
complete attribute, and because the fields are not mapped in the mapping file, the default mapping values

will be used. The name and salary fields will be mapped to the NAME and SALARY columns,
respectively.

For more information, see Section 10.1 "XML Overriding Rules" of the JPA Specification (http://jcp.org
/en/jsr/detail?1d=220) .

Advantages and Disadvantages of Using Annotations

Metadata annotations are relatively simple to use and understand. They provide in-line metadata located with
the code that this metadata is describing — you do not need to replicate the source code context of where the
metadata applies.

On the other hand, annotations unnecessarily couple the metadata to the code. Thus, changes to metadata
require changing the source code.

Advantages and Disadvantages of Using XML

The following are the advantages of using XML:

® 1o coupling between the metadata and the source code;
m compliance with the existing, pre-EJB 3.0 development process;
m support in IDEs and source control systems.

156 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

157 of 186

The main disadvantages of mapping with XML are the complexity and the need for replication of the code
context.

What You May Need to Know About EclipseLink JPA Overriding
Mechanisms

EclipseLink JPA provides a set of persistence unit properties (see What you May Need to Know About
Using EclipseLink JPA Persistence Unit Properties) that you can specify in your persistence.xml file.
The persistence unit properties always override the corresponding annotations' attributes.

Similar to EclipseLink annotations, properties expose some features of EclipseLink that are currently not
available through the use of JPA metadata.

Note: If multiple instances of the same property are set, then EclipseLink will use the
values from the last entry in the list. However, the properties Map provided in the
createEntityManagerFactory method will always have precedence.

You can also specify the persistence information in the EclipseLink session configuration file —
sessions.xml (see Session Configuration and the sessions.xml File). By setting the
eclipselink.sessions-xml persistence unit property you enable EclipseLink to replace all class
annotations and object relational mappings that you defined in the persistence.xml file, as well as
mapping files (if present). Through the sessions.xml file the eclipselink.sessions-xml
property lets you provide session-level configurations that are not supported by persistence unit properties
(for example, cache coordination).

Note: You can use the eclipselink.sessions-xml property as an alternative
to annotations and deployment XML.

For more information on creating and configuring the sessions.xml file, see the following:

Acquiring a Session at Run Time with the Session Manager
Building and Using the Persistence Layer

Loading project.xml or sessions.xml Files

Development Environment

Introduction to the EclipseLink Deployment File Creation
Packaging an EclipseLink Application

EclipseLink Sessions XML File

Introduction to the Session Creation

Creating a Sessions Configuration

Configuring a Sessions Configuration

Introduction to Session Acquisition

In summary, EclipseLink JPA possesses an overriding mechanism that you can use in the following ways:

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

= You can combine the use of JPA annotations, object relational mapping files (such as orm.xml) and
persistence unit properties.In this case, EclipseLink persistence provider builds metadata starting with
applying defaults, then JPA annotations, and then overrides that with elements of the object relational
mapping file. This results in creation of an in-memory EclipseLink session and project. Then
EclipseLink persistence provider applies persistence unit properties specified in
persistence.xml file, as the following illustration shows.

Note: The eclipselink.sessions-xml property represents a special case discussed
further.

Combining the Use of Annotations, orm.xml File and Persistence Unit Properties

JPA, A mntations

(EEntity
public class Employes §

}...

l Owertidden By

arm.xml
=ertity-mappings=
=entity name="Employee"=
=lertity=
=Jdertity-mappings:=

l Creerridden By

Defaults

l Resultz In

EclipseLlink
JPA Persistence Provider
Based On
In-Memaoty
EclipseLlink
Session and Project

®m You canuse the eclipselink.sessions-xml persistence unit property. This defines a
sessions.xml file, which references a project.xml file. In this case, EclipseLink persistence
provider builds an in-memory EclipseLink session and project based on this metadata, as the following
illustration shows. You can acquire a persistence manager and use it as per the JPA specification,
having defined all entities and so on using only EclipseLink sessions.xml (see Creating Session
Metadata) and project.xml files that you created Workbench (see Creating the project.xml File
with Workbench|Creating the project.xml File with Workbench).

Using eclipselink.sessions-xml Persistence Unit Property

158 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

persiztence xml Property

))) ——= |=zessions.eml| ——= | project.xml
eclipzelink zession-name

i Fesultz In

EclipseLlink
JRL, Persistence Provider
Bazed On
In-Memary
EclipseLlink
Session and Project

Note: You cannot combine the use of JPA annotations, object relational mapping
files, persistence unit properties and the eclipselink.sessions-xml
persistence unit property.

What You May Need to Know About Using EclipseLink JPA
Persistence Unit Properties

A persistence unit configures various details that are required when you acquire an entity manager. You
specify a persistence unit by name when you acquire an entity manager factory.

You configure persistence units in JPA persistence descriptor file persistence.xml.

In this file, you can specify the vendor extensions that this reference describes by using a <properties>
element. The Configuring a Vendor Extension in the persistence.xml File (Java EE) example shows how to
set an EclipseLink JPA persistence unit extension in a persistence.xml file for a Java EE application.
The Configuring a Vendor Extension in the persistence.xml File (Java SE) example shows how to do the
same for a Java SE application.

Note: that EclipseLink does not provide a mechanism for encrypting the password in
the persistence.xml file. (see Avoiding Cleartext Passwords)

Configuring a Vendor Extension in the persistence.xml File (Java EE)

159 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

160 of 186

<persistence-unit name="default" transaction-type="JTA">
! <provider>
org.eclipse.persistence.jpa.PersistenceProvider
</provider>
<jta-data-source>
jdbc/MyDataSource
</jta-data-source>

<properties>
<property name="eclipselink.logging.level” value="INFO"/>
</properties>
</persistence-unit>

1 1
<persistence-unit name="default" transaction-type="RESOURCE LOCAL"> .
. <provider> .
org.eclipse.persistence.jpa.PersistenceProvider ,
</provider> '
<exclude-unlisted-classes>false</exclude-unlisted-classes> !
<properties> !
<property name="eclipselink.logging.level” value="INFO"/> '
<property name="eclipselink.jdbc.driver" value:"oracle.jdbc.OracleDrivq
<property name="eclipselink.jdbc.url" value:"jdbc:oracle:thin:@myhost:%
<property name="eclipselink.jdbc.password" value="tiger"/>
<property name="eclipselink.jdbc.user" value="scott"/>
</properties>

</persistence-unit>

Alternatively, you can set a vendor extensions in the Map of properties you pass into a call to
javax.persistence.Persistence method createEntityManagerFactory, as the
Configuring a Vendor Extension when Creating an EntityManagerFactory example shows. You can override
extensions set in the persistence.xml file in this way. When you set an extension in a map of
properties, you can set the value using the public static final field in the appropriate configuration class in
org.eclipse.persistence.config, including the following:

® CacheType

m TargetDatabase

m TargetServer

m PersistenceUnitProperties

The following example shows how to set the value of extension eclipselink.cache.type.default
using the CacheType configuration class.

Configuring a Vendor Extension when Creating an EntityManagerFactory

1
limport org.eclipse.persistence.config.CacheType;
1

:Map properties = new HashMap () ;

properties.put (PersistenceUnitProperties.CACHE TYPE DEFAULT, CacheType.Full);
:EntityManagerFactory emf = Persistence.createEntityManagerFactory("default", properties);

L e e e e e e e e e e e e e e e e e m e e e e e e e e e e e = = = = = = a4

You may specify any EclipseLink JPA extension in a persistence.xml file and you may pass any

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

EclipseLink JPA extension into Persistence method createEntityManagerFactory.

Currently, no EclipseLink JPA extensions are applicable to EntityManagerFactory method
createEntityManager.

For more information, see the following:

m Section 2.1 "Requirements on the Entity Class" of the JPA Specification (http://jcp.org/en/jsr
/detail?1d=220) ;

m Chapter 5 "Entity Managers and Persistence Contexts" of the JPA Specification (http://jcp.org/en/jsr
/detail?id=220) .

Allowing Zero Value Primary Keys

By default, EclipseLink interprets zero as null for primitive types that cannot be null (such as int and
long) causing zero to be an invalid value for primary keys. You can modify this setting by using the allow-
zero-id property in the persistence.xml file. Valid values are:

m true — EclipseLink interprets zero values as zero. This permits primary keys to use a value of zero.
m false (default) — EclipseLink interprets zero as null.

Avoiding Cleartext Passwords

EclipseLink does not support storing encrypted passwords in the persistence.xml file. For a Java EE
application, you do not need to specify your password in the persistence.xml file. Instead, you can
specify a data-source, as shown in the Java EE example. This datasource is specified on the application
server, and can encrypt the your password with its own mechanism.

For a Java SE application, you should avoid putting the password in the persistence.xml file. Instead,
add the password to the properties, as shown in the Setting the password in code example. Setting the
password in code allows for the password to be retrieved from any location, including a protected source.

Setting the password in code

1
Map properties = new HashMap () ; .
1
1 properties.put (PersistenceUnitProperties.JDBC PASSWORD, "tiger"); .
: EntityManagerFactory emf = Persistence.createEntityManagerFactory("default", px
1

1

Copyright Statement

Configuring a EclipseLink JPA Application

This section contains information on how you can configure your EclipseLink persistence

i Related Topics
project.

When configuring an EclipseLink JPA application you cannot use the
org.eclipselink.sessions.Project class, but you can still customize sessions and descriptors by
using the customizer extensions (see Using EclipseLink JPA Extensions for Customization and Optimization).

161 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

You can set up your EclipseLink JPA application using various IDEs.

At run time, if the eclipselink. jar file is on the application classpath, you have the option to choose
EclipseLink as a persistence provider for your application.

Configuring Oracle Database Proxy Authentication for a JPA
Application

One of the features of the Oracle Database is proxy authentication. For more information, see Oracle
Database Proxy Authentication.

How to Provide Authenticated Reads and Writes of Secured Data Through the Use of
an Exclusive Isolated Client Session

If you use Oracle Virtual Private Database (VPD) (see Isolated Client Sessions and VPD), and you want to
enable read and write access control for your EclipseLink JPA application, in the SessionCustomizer class
set the connection policy to use exclusive connections, and define the descriptor for secured data as isolated
(see Configuring Cache Isolation at the Descriptor Level). Consider the following example.

Specifying the Use of an Exclusive Connection

The next step is to pass one or more properties to the createEntityManagerFactory method, as the
following example demonstrates. These properties should indicate that one or more specific entities use an
isolated cache.

:Map properties = new HashMap () ;
:properties.put("eclipselink.cache.shared.Employee", "false");

e

:EntityManagerFactory emf = Persistence.createEntityManagerFactory (properties);

g -

In the preceding example, an entity named Employee uses isolated cache and will be read and written
through an exclusive connection.

To specify that all entities are to use isolated cache, set the eclipselink.cache.shared.default
property to false:

o s s e s — - 1
! 1
:properties.put("eclipselink.cache.shared.default", "false");

1
L e e e e e e e e e e E E e m e m e m e e mmmm - —m == -

For more information, see How to Use the Persistence Unit Properties for Caching.

How to Provide Authenticated Writes for Database Auditing Purposes with a Client
Session

If you want to enable write access control for your EclipseLink JPA application, in your SessionCustomizer

class provide the EntityManager with properties similar to the ones that the following example
demonstrates.

162 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

163 of 186

:Map emProperties = new HashMap () ;

lemProperties.put ("eclipselink.oracle.proxy-type", oracle.jdbc.OracleConnection.PROXYTYPE USER N
emProperties.put (oracle.jdbc.OracleConnection.PROXY USER NAME, "john");

:EntityManager em = emFactory.createEntityManager (emProperties);

g

| M |

In the preceding example, the EntityManager uses a proxy user "john" for writes and reads inside a
transaction. Note that reads, which are performed outside of the transaction, are done through the main
(non-proxied) connection.

If you created your EntityManager using injection, set the properties as follows:

For more information, see How to Use the Persistence Unit Properties for Caching.

How to Define Proxy Properties Using EntityManagerFactory

You can also define proxy properties using the EntityManagerFactory. If you choose to do so, note
that all connections will use these properties, unless they are overridden in the EntityManager. Consider
the following example:

e e e e e e e e e e e e e e e = = 1
1
:Map factoryProperties = new HashMap () ; 1

IfactoryProperties.put ("eclipselink.oracle.proxy-type", oracle.jdbc.OracleConnection.PROXYTYPEiUﬂ
:factoryProperties.put(oracle.jdbc.OracleConnection.PROXY_USER_NAME, "sarah") ;
:EntityManagerFactory emf = Persistence.createEntityManagerFactory (factoryProperties);

1

'// eml does not specify its own proxy properties -

i// it uses proxy user "sarah" specified by the factory

' i - ; .

[EntityManager eml = emf.createEntityManager();

1

Map emProperties = new HashMap () ;

lemProperties.put ("eclipselink.oracle.proxy-type", oracle.jdbc.OracleConnection.PROXYTYPE USER N
:emProperties.put(oracle.jdbc.OracleConnection.PROXYiUSERiNAME, "john") ;

1

:// em2 uses its own proxy properties (proxy user "john"),

:// regardless of whether or not factory has proxy properties

IEntityManager em2 = emf.createEntityManager (emProperties);

1

:// em3 does not use any proxy connection.

:// It cancels proxy properties defined in the factory

:Map cancelProperties = new HashMap () ;

cancelProperties.put ("eclipselink.oracle.proxy-type", "");

:EntityManager em3 = emf.createEntityManager (cancelProperties);

L e e e e e e m e e e e e e e e e e e = = = e e e e e = = = = = =

e e e e e e e r e e e e e e e T e e e e e e e == =

Setting Up Packaging

You can package your application manually (see Packaging an EclipseLink JPA Application), or use an IDE.

Copyright Statement

Developing Applications Using EclipseLink JPA

11/25/2009 2:46 PM

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Related Topics

Using Application Components

When developing an application with EclipseLink JPA, you need to know how to use the following
application components:

= Entity manager factory
= Entity manager
m Persistence context

How to Obtain an Entity Manager Factory

How you obtain the entity manager factory depends on the Java environment in which you are developing
your application:

= Obtaining an Entity Manager Factory in Java EE Application Server Environment
m Obtaining an Entity Manager Factory in Java SE Environment

Obtaining an Entity Manager Factory in Java EE Application Server Environment

You can inject an entity manager factory using the @PersistenceUnit annotation, as the following
example shows, or you can obtain it through JNDI lookup. You may choose to specify the unitName
element to designate the persistence unit whose factory you are using.

:@PersistenceUnit
:EntityManagerFactory emf;

For more information, see the following:

= Section 8.4.2 "PersistenceUnit Annotation" of the JPA Specification (http://jcp.org/en/jsr
/detail?id=220)

m Section 5.3.1 "Obtaining an Entity Manager Factory in a Java EE Container" of the JPA Specification
(http://jcp.org/en/jsr/detail ?1d=220)

= Container-Managed Entity Manager

Obtaining an Entity Manager Factory in Java SE Environment

In Java SE environment, use the Jjavax.persistence.Persistence bootstrap class to get access to
an entity manager factory. In your application, create an entity manager factory by calling the
javax.persistence.Persistence class' createEntityManagerFactory method (see Section
7.2.1 "javax.persistence.Persistence Class" of the JPA Specification (http://jcp.org/en/jst/detail?id=220)), as
the following example shows:

e m e e m e m e m e m e e e e .
! 1
:EntityManagerFactory emf = javax.persistence.Persistence.createEntityManagerFact]

X EntityManager em = emf.createEntityManager () ; .
1

1
i S gy -

164 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

165 of 186

For more information, see the following:

m Section 7.2.1 "javax.persistence.Persistence Class" of the JPA Specification (http://jcp.org/en/jsr
/detail?1d=220)

m Section 5.3.2 "Obtaining an Entity Manager Factory in a Java SE Container" of the JPA Specification
(http://jcp.org/en/jsr/detail 71d=220)

® Application-Managed Entity Manager

How to Obtain an Entity Manager

All entity managers come from factories of type EntityManagerFactory. The configuration for an
entity manager is bound to the EntityManagerFactory that created it, but it is defined separately as a
persistence unit. A persistence unit dictates either implicitly or explicitly the settings and entity classes used
by all entity managers obtained from the unique EntityManagerFactory instance bound to that
persistence unit. There is, therefore, a one-to-one correspondence between a persistence unit and its concrete
EntityManagerFactory.Persistence units are named to allow differentiation of one
EntityManagerFactory from another. This gives the application control over which configuration or
persistence unit is to be used for operating on a particular entity.

How you obtain the entity manager and its factory depends on the Java environment in which you are
developing your application:

m Obtaining an Entity Manager in Java EE Application Server Environment
= Obtaining an Entity Manager in Java SE Environment

Obtaining an Entity Manager in Java EE Application Server Environment

In the Java EE environment, you can inject an entity manager using the @PersistenceContext
annotation, as the following example shows, or you can obtain it through a direct JNDI lookup. You may
choose to specify the unitName element of the @PersistenceContext annotation to designate the
persistence unit whose factory the container is using (see Section 8.4.2 "PersistenceUnit Annotation" of the
JPA Specification (http://jcp.org/en/jsr/detail?id=220)). You can also specify the t ype element to indicate
whether a transaction-scoped (default) or extended persistence context is to be used (see Section 5.6
"Container-managed Persistence Contexts" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)).

1
'ePersistenceContext
EntityManager em;

1
1
1
. @PersistenceContext (type=PersistenceContextType.EXTENDED)
i EntityManager orderEM;

1

The container manages the life cycle of the persistence context, as well as the creation and closing of the
entity manager—your application does not have to be involved in this process.
For more information, see the following:
m Section 8.4.2 "PersistenceUnit Annotation" of the JPA Specification (http://jcp.org/en/jsr
/detail?id=220)

m Section 5.6 "Container-managed Persistence Contexts" of the JPA Specification (http://jcp.org/en/jsr
/detail?id=220)

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

166 of 186

m Section 5.2.1 "Obtaining an Entity Manager in a Java EE Container" of the JPA Specification
(http://jcp.org/en/jsr/detail 7id=220)
= Container-Managed Entity Manager

Obtaining an Entity Manager in Java SE Environment

You obtain an application-managed entity manager from an entity manager factory.
For more information and examples, see the following:
m Section 5.2.2 "Obtaining an Entity Manager in a Java SE Container" of the JPA Specification
(http://jcp.org/en/jsr/detail ?1d=220)

= How to Obtain an Entity Manager Factory
® Application-Managed Entity Manager

What You May Need to Know About Entity Managers and Their Factories

An entity manager persists and manages specific types of objects, enables reading from and writing to a
given database. You have to configure the entity manager to do so. You are also responsible for configuring
the entity manager to be implemented by a particular persistence provider, such as EclipseLink. The provider
supplies the backing implementation engine for the entire Java Persistence APIL, which includes an entity
manager, a Query implementation, and SQL generation.

An entity manager implements the API enabling operations on entities. It is encapsulated almost entirely
within a single interface called EntityManager. Until you use an entity manager to create, read, or write
an entity, the entity is nothing more than a regular nonpersistent Java object.

For more information, see Chapter 5 "Entity Managers and Persistence Contexts" of the JPA Specification
(http://jcp.org/en/jsr/detail 7id=220) .

Applications use the EntityManagerFactory interface for creating an application-managed entity
manager (see Obtaining an Entity Manager in Java SE Environment).

Each entity manager factory provides entity manager instances that are all configured in the same manner (for
example, configured to connect to the same database or use the same initial settings as defined by the
implementation).

How to Use a Persistence Context

Information pending

Using an Extended Persistence Context

Information pending

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

167 of 186

What You May Need to Know About Persistence Contexts and Persistence Units

When an entity manager (see What You May Need to Know About Entity Managers and Their Factories)
obtains a reference to an entity (either by having it explicitly passed in or because it was read from the
database) that object becomes managed by the entity manager. The set of managed entity instances within an
entity manager at any given time is called this entity manager's persistence context. Only one Java instance
with the same persistent identity may exist in a persistence context at any time. For example, if an Employee
with a persistent identity (or id) of 158 exists in the persistence context, then no other object with its id set to
158 may exist within that same persistence context.

An EntityManager instance is associated with a persistence context. A persistence context is a set of
entity instances in which for any persistent entity identity there is a unique entity instance. The entity
instances and their life cycle are managed within the persistence context. The EntityManager interface
defines the methods for interacting with the persistence context. The EntityManager APl is used to
create and remove persistent entity instances, to find entities by their primary key, and to query over entities.

For more information, see Section 5.1 "Persistence Contexts" of the JPA Specification (http://jcp.org/en/jsr
/detail ?id=220) .

Persistence Unit

The set of entities that a given EntityManager instance manages is defined by a persistence unit. A
persistence unit defines the set of all classes that are related or grouped by your application, and which must
be collocated in their mapping to a single database.

A persistence unit includes the following:

® An entity manager factory and its entity managers, together with their configuration information.

m The set of classes managed by the entity managers.

m Mapping metadata (in the form of metadata annotations and/or XML metadata) that specifies the
mapping of the classes to the database.

Querying for an Entity

How to Use the Entity Manager find Method

Information pending

What You May Need to Know About Querying with Java Persistence Query
Language

You can use the Java Persistence query language (JP QL) to define queries over entities and their persistent
state.

JP QL is an extension of EJB QL, and adds the following features:

m Single and multiple value result types;
m Aggregate functions with sorting and grouping clauses;

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

A more natural jon syntax, including support for both inner and outer joins;
Conditional expressions involving subqueries;

Update and delete queries for bulk data changes;

Result projection into nonpersistent classes.

JP QL supports the use of dynamic queries and the use of named parameters. You can use it to define
queries over the persistent entities, as well as their persistent state and relationships

You may define queries in metadata annotations or the XML descriptor.

A JP QL statement may be either a select statement, an update statement, or a delete statement. All statement
types may have parameters. Any statement may be constructed dynamically or may be statically defined in a
metadata annotation or XML descriptor element.

This example demonstrates how to create a simple query that finds all orders using JP QL.

Simple Query to Find All Objects

\SELECT ORDER

 FROM ORDER ORDER

This example demonstrates how to create a simple query that finds all orders to ship to California using JP

QL.
Simple Query to Find Some Objects
SELECT ORDER

1

1

Ll

, FROM ORDER ORDER

\ WHERE ORDER.shippingAddress.state = 'CA'
1

For more information and examples, see the following:

Chapter 4 "Query Language" of the JPA Specification (http://jcp.org/en/jsr/detail?1d=220)
Section 3.6 "Query API" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)
What You May Need to Know About Named and Dynamic Queries

What You May Need to Know About Persisting with JP QL

What You May Need to Know About Named and Dynamic Queries

You can use the Query API to define both named and dynamic queries.

Named queries are static and expressed in metadata. You can define named queries using JP QL or SQL,
scoping their names to the persistence unit.

Note: The query name must be unique within the scope of the persistence unit.

These queries are efficient to execute as the persistence provider can translate JP QL to SQL once, when you

168 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

application starts, as opposed to every time the query is executed. You define a named query using the
@NamedQuery annotation (see Section 8.3.1 "NamedQuery Annotation" of the JPA Specification
(http://jcp.org/en/jsr/detail ?71d=220)), which you may place on the class definition for any entity. The
annotation defines the name of the query, as well as the query text, as this example shows:

Defining a Named Query

1

1

\@NamedQuery (name="findSalaryForNameAndDepartment",

! query="SELECT e.salary " +

1 "FROM Employee.e " +

. "WHERE e.department.name = :deptName AND " +
X " e.name = :empName")

1

Place your named query on the entity class that most directly corresponds to the query result. In the
preceding example, that would be the Employee entity.

If you need to define more than one named query for a class, place them inside of a @NamedQueries
annotation (see Section 8.3.1 "NamedQuery Annotation" of the JPA Specification (http://jcp.org/en/jsr
/detail?id=220)) that accepts an array of @NamedQuery annotations, as this example shows:

Defining Multiple Named Queries for an Entity

\@NamedQueries ({

1
. @NamedQuery (name="Employee.findAll",

. query="SELECT e FROM Employee.e"),

! @NamedQuery (name="Employee.findByPrimaryKey",

! query="SELECT e FROM Employee.e WHERE e.id = :id"),
:

1

1

1

1

@NamedQuery (name="Employee.findByName",
query="SELECT e FROM Employee.e WHERE e.name = :name'"),
})
g g -

Because the query string is defined in the annotation, your application cannot alter it at run time. If you need
to specify additional criteria, you must do it using query parameters. This example shows how you can use
the createNamedQuery method of the EntityManager to create a named query that requires a query
parameter.

1

1rr1rt Creating a Named Query with Parameters''''!
@PersistenceContext

public EntityManager em;

customers = em.createNamedQuery ("findAllCustomersWithName")
.setParameter ("custName", "Smith").getResultList();

You may choose to define named queries in an XML mapping file (see Using XML) using the
named-query element. A named-query element in the mapping file may also override an existing query
of the same name that was defined as an annotation. A named-query element may appear as a subelement
of entity-mapping or entity elements. Regardless of where you defined it, it will be keyed by its
name in the persistence unit query namespace. You may provide query hints as hint subelements.

This example shows the definition a named query in an XML mapping file. This query uses

169 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

eclipselink.cache-usage hint to bypass the cache.

Defining a Named Query in an XML Mapping File

entity-mapping>

<named-query name="findEmployeesWithName">
<query>SELECT e FROM Employee e WHERE e.name LIKE :empName</query>
<hint name="eclipselink.cache-usage" value="DoNotCheckCache"/>

</named-query>

<entity-mapping>

Note: We recommend using named queries with query parameters.

Dynamic queries are strings. You generate these queries at run time by passing the JP QL query string to the
createQuery method of the EntityManager. There are no restrictions on the query definition; all JP
QL query types are supported, as well as the use of parameters.

You may consider using dynamic queries in your application, if there might be a need to specify complex
criteria and the exact shape of the query cannot be known in advance. However, note that if your application
issues many queries, the use of dynamic queries will have a negative impact on performance.

For more information and examples, see the following:

Section 3.6.4 "Named Queries" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)
Section 3.6 "Query API" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)

Using EclipseLink JPA Query Customization Extensions

Cache

Named Queries

What You May Need to Know About Query Hints

Persisting Domain Model Changes

How to Use JTA

Information pending

How to Use RESOURCE_LOCAL

Information pending

How to Configure Flushing and Set Flush Modes

Information pending

170 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia

171 of 186

How to Manage a Life Cycle of an Entity

Information pending

Merging Detached Entity State

Information pending

Using Detached Entities and Lazy Loading

Information pending
For more information, see the following:

m Section 3.2.4.2 "Detached Entities and Lazy Loading" of JPA specification
m Indirection, Serialization, and Detachment

What You May Need to Know About Persisting with JP QL

You may define queries in metadata annotations or the XML descriptor.

You can use update and delete queries to persist your changes with JP QL.

http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

You can perform bulk update of entities with the UPDATE statement. This statement operates on a single
entity type and sets one or more single-valued properties of the entity subject to the condition in the WHERE
clause. Update queries provide an equivalent to the SQI, UPDATE statement, but with JP QL conditional

expressions.

This example demonstrates how to use an update query to give employees a raise. The WHERE clause

contains the conditional expression.

Update Query

UPDATE Employee e
SET e.salary = 60000
WHERE e.salary = 50000

You can perform bulk removal of entities with the DELETE statement. Delete queries provide an equivalent

to the SQL. DELETE statement, but with JP QL conditional expressions.

This example demonstrates how to use a delete query to remove all employees who are not assigned to a

department. The WHERE clause contains the conditional expression.

Delete Query

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

DELETE FROM Employee e
| WHERE e.department IS NULL
1

Note: Delete queries are polymorphic: any entity subclass instances that meet the
criteria of the delete query will be deleted. However, delete queries do not honor
cascade rules: no entities other than the type referenced in the query and its
subclasses will be removed, even if the entity has relationships to other entities with
cascade removes enabled.

The persistence context is not updated to reflect results of update and delete operations. If you use a
transaction-scoped persistence context, you should either execute the bulk operation in a transaction all by
itself, or be the first operation in the transaction (see Introduction to EclipseLink Transactions). That is
because any entity actively managed by the persistence context will remain unaware of the actual changes
occurring at the database level.

For more information and examples, see the following:

= Section 4.10 "Bulk Update and Delete Operations" of the JPA Specification (http://jcp.org/en/jsr
/detail?id=220)

Chapter 4 "Query Language" of the JPA Specification (http://jcp.org/en/jsr/detail ?7id=220)

What You May Need to Know About Querying with Java Persistence Query Language

Queries

Named Queries

What You May Need to Know About Persisting Results of Named and Dynamic
Queries

Expressions listed in the SELECT clause of a query determine the result type of the query. The following are
some of the type that may result from JP QL queries:

Basic types: String, primitive types, JDBC types

Entity types

An array of Object instances

User-defined types created from a constructor-expressions

The collection or single result corresponds directly to the result type of the query.

The Query interface provides three different ways to execute a query, depending on whether or not the
query returns results and how many results are expected. For queries that return values, you can call either
the following methods:

m getResultList-use this method if you expect the query to return more than one result. This
method returns a collection (List) containing query results. If there are no results to return, this
method returns an empty collection.

B getSingleResult-use this method if you expect the query to return a single result. In case of
unexpected results, such as there are no results to return or multiple results are available, this method
throws an exception.

Use the executeUpdate method of the Query interface to invoke bulk update and delete queries (see

172 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

173 of 186

What You May Need to Know About Persisting with JP QL).

The active persistence context manages a returned entity instance. If that entity instance is modified and the
persistence context is part of a transaction, then the changes will be persisted to the database.

Note: If you use a transaction-scoped entity manager outside of a transaction, then the
executed query will return detached entity instances instead of managed entity
instances. To make changes to these detached entities, you must merge them into a
persistence context before synchronizing with the database.

You can reuse Query objects as often as you need so long as the same persistence context that you used to
create the query is active. For transaction-scoped entity managers, this limits the lifetime of the Query
object to the life of the transaction. Other entity manager types may reuse Query objects until you close or
remove the entity manager.

For more information, see the following:

Section 3.6 "Query API" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)
Section 3.6.4 "Named Queries" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)
Using EclipseLink JPA Query Customization Extensions

Queries

Named Queries

Section 5.6.4.1 "Container-managed Transaction-scoped Persistence Context" of the JPA
Specification (http://jcp.org/en/jsr/detail?1d=220)

Using EclipseLink JPA Extensions in Your Application
Development

This section describes the following:

How to Use Extensions for Query

How to Configure Lazy Loading

How to Configure Change Tracking

How to Configure Fetch Groups

What You May Need to Know About EclipseLink Caching
What You May Need to Know About EclipseLink Caching
What You May Need to Know About Cache Coordination
How to Configure Cascading

What You May Need to Know About Cascading Entity Manager Operations
How to Use EclipseLink Metadata

How to Use Events and Listeners

What You May Need to Know About Database Platforms
What You May Need to Know About Server Platforms
How to Optimize a JPA Application

How to Perform Diagnostics

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

How to Use Extensions for Query

Information pending

Using Query Hints

Information pending

What You May Need to Know About Query Hints

Query hints are the JPA extension point for vendor-specific query features. Hints are the only feature in the
query API that are not a standard usage: a hint is a string name and object value.

You may associate your queries with hints by either setting them in the persistence unit metadata as part of
the @NamedQuery annotation (see Section 8.3.1 "NamedQuery Annotation" of the JPA Specification
(http://jcp.org/en/jsr/detail 7id=220)), or by using the set Hint method of the Query.

The Using Query Hints example shows how to use the eclipselink.cache-usage hint to indicate that
the cache should not be checked when reading an Employee for the database.

Note: Unlike the refresh method of the EntityManager, the
eclipselink.cache-usage hint will not cause the query result to override the
current cached value.

Using Query Hints

public Employee findEmployeeNoCache (int empId) {
Query g = em.createQuery ("SELECT e FROM Employee e WHERE e.id = ?21");
// force read from database
g.setHint ("eclipselink.cache-usage", "DoNotCheckCache");
g.setParameter (1, empIld);
try {
return (Employee)qg.getSingleResult ()
}
catch (NoResultException e) {
return null;

If you need execute this query frequently, you should use a named query. The following named query
definition incorporates the cache hint from the Using Query Hints example.

:@NamedQuery(name:"findEmployeeNoCache",

! query="SELECT e FROM Employee e WHERE e.id = :empId",

hints={@QueryHint (name="eclipselink.cache-usage",
value="DoNotCheckCache") })

Lcmccmccmmcmcmcrccmcmmccmccmcm-mcmemmmmmmemmme e e e mem e e e e e e e e e e e e e e e m e mm— e —m—,——————— -

174 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

The hints element accepts an array of @QueryHint annotations (see Section 8.3 "Annotations for
Queries" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)), allowing you to set any number of
hints for a query.

For more information, see the following:

Section 3.6 "Query API" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)
Using EclipseLink JPA Query Customization Extensions

Cache

How to Use Oracle Hints

Using the Expression API

Information pending

How to Configure Lazy Loading

By default, the EclipseLink persistence provider will use dynamic weaving to configure all applicable
mappings with lazy loading (indirection).

For JPA entities or POJO classes that you configure for weaving, EclipseLink weaves value holder
indirection for one-to-one mappings. If you want EclipseLink to weave change tracking and your application
includes collection mappings (one-to-many and many-to-many), then you must configure all collection
mappings to use transparent indirect container indirection only (you may not configure your collection
mappings to use eager loading, nor value holder indirection).

For more information, see the following:

Using EclipseLink JPA Extensions for Customization and Optimization
What You May Need to Know About EclipseLink JPA Lazy Loading
Using EclipseLink JPA Weaving

Configuring Indirection (Lazy Loading)

How to Configure Change Tracking

By default, the EclipseLink persistence provider will use dynamic weaving to configure all applicable
mappings with attribute level change tracking.

For JPA entities or POJO classes that you configure for weaving, EclipseLink weaves value holder
indirection for one-to-one mappings. If you want EclipseLink to weave change tracking and your application
includes collection mappings (one-to-many and many-to-many), then you must configure all collection
mappings to use transparent indirect container indirection only (you may not configure your collection
mappings to use eager loading, nor value holder indirection).

For more information, see the following:

m Using EclipseLink JPA Extensions for Tracking Changes
m Using EclipseLink JPA Weaving
= Configuring Change Policy

175 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

176 of 186

How to Configure Fetch Groups

By default, the EclipseLink persistence provider will use dynamic weaving to configure all applicable
mappings to use fetch groups.

For more information, see the following:

m Using EclipseLink JPA Extensions for Customization and Optimization
m Using EclipseLink JPA Weaving
= Configuring Fetch Groups

How to Use Extensions for Caching

Information pending

What You May Need to Know About EclipseLink Caching

The EclipseLink cache is an in-memory repository that stores recently read or written objects based on class
and primary key values. EclipseLink uses the cache to do the following:

® Improve performance by holding recently read or written objects and accessing them in-memory to
minimize database access.

= Manage locking and isolation level.

= Manage object identity.

EclipseLink uses the following two types of cache:

m the session cache maintains objects retrieved from and written to the data source;
m the unit of work cache holds objects while they participate in transactions.

When a unit of work successfully commits to the data source, EclipseLink updates the session cache
accordingly.

For more information, see Cache.

What You May Need to Know About Cache Coordination

EclipseLink provides a distributed cache coordination feature that ensures data in distributed applications
remains current.

For more information, see the following:

Cache Coordination
Configuring Locking Policy
Querying and the Cache
Cache

How to Configure Cascading

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

177 of 186

Information pending
For more information, see the following:

= What You May Need to Know About Cascading Entity Manager Operations
= Mapping Relationships

= Using EclipseLink JPA Extensions for Optimistic Locking

= How to Use the @PrivateOwned Annotation

What You May Need to Know About Cascading Entity Manager Operations

Typically, you use cascading in parent-child relationships.

By default, every entity manager operation applies only to the entity that you supplied as an argument to the
operation. The operation will not cascade to other entities that have a relationship with the entity under
operation. For some operations, such as remove, this is usually the desired behavior. For other operations,
such as persist, it is not: in most cases, if you have a new entity that has a relationship to another new
entity, you would want to persist both entities together.

Using the cascade element of relationship annotations (see Mapping Relationships), you can define whether
or not to cascade operations across relationships.

When listed as a part of the cascade element, you can identify the entity manager operations with the
following constant values using the javax.persitence.CascadeType enumerated type:

PERSIST—corresponds to the entity manager persist operation,
REFRESH—corresponds to the entity manager refresh operation;
REMOVE—corresponds to the entity manager remove operation;
MERGE—corresponds to the entity manager merge operation;
ALL—indicates that all four operations should be cascaded.

Note: Cascade sessions are unidirectional: you must set them on both sides of a
relationship if you plan for the same behavior for both situations.

For more information, see the following:
= Mapping Relationships
= How to Configure Cascading

= How to Use the @OptimisticLocking Annotation
= How to Use the @PrivateOwned Annotation

How to Use EclipseLink Metadata

Information pending

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Using EclipseLink Project

Information pending

Using sessions.xml File

Information pending

How to Use Events and Listeners

Information pending
<org.eclipse.persistence.sessions. SessionEventListener (eclipselink.session.event-listener)>

<Configure a descriptor event listener to be added during bootstrap.>

Using Session Events

Information pending

Using an Exception Handler

Information pending

What You May Need to Know About Database Platforms

EclipseLink interacts with databases using SQL. The type of database platform you choose determines the
specific means by which the EclipseLink runtime accesses the database.

For more information, see Database Platforms.

What You May Need to Know About Server Platforms

You deploy your application to a specific Java EE application server.

EclipseLink supports most versions of WebLogic, OC4J, SunAS, and WebSphere application servers.
For more information, see the following:

= Configuring the Server Platform
= Integrating EclipseLink with an Application Server

How to Optimize a JPA Application

178 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Information pending

Using Statement Caching

Information pending

Using Batch Reading and Writing

Information pending

How to Perform Diagnostics

Information pending

Using Logging

Information pending

Using Profiling

Information pending

Using JMX

Information pending

Copyright Statement

Packaging and Deploying EclipseLink JPA
Applications

Related Topics

Packaging an EclipseLink JPA Application

179 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Packaging means assembling all parts of the application in a way that can be correctly interpreted and used
by the infrastructure when the application is deployed into an application server or run in a stand-alone JVM.

Once you chose a packaging strategy, place the persistence.xml file in the META-INF directory of the
archive of your choice.

In a Java EE environment, the most efficient way to package your application is to use a tool, such as
JDeveloper or Eclipse. Using OC4lJ, it is possible to skip the packaging step and deploy from your working
directories using expanded deployment.

To package your EclipseLink JPA application, you need to configure the persistence unit during the creation
of the persistence.xml file. Define each persistence unit in a persistence-unit element in the
persistence.xml file.

For more information, see the following:

m Chapter 6 "Entity Packaging" of the JPA Specification (http://jcp.org/en/jsr/detail?1d=220)
m Packaging an EclipseLink Application

How to Specify the Persistence Unit Name

If you are developing your application in a Java EE environment, ensure that the persistence unit name is
unique within each module. For example, you can define only one persistence unit with the name
"EmployeeService" inanemp ejb.jar file. The following example shows how to define the name of
the persistence unit:

For more information, see Section 6.2.1.1 "name" of the JPA Specification (http://jcp.org/en/jsr
/detail?id=220) .

How to Specify the Transaction Type, Persistence Provider and Data Source

If you are developing your application in a Java EE environment, accept the default transaction type (see
Section 6.2.1.2 "transaction-type" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220))-JTA (see
JTA Transaction Management), and for the persistence provider setting, set the persistence provider in a
provider element (see Section 6.2.1.2 "provider" of the JPA Specification (http:/jcp.org/en/jsr
/detail7id=220)). Specify the data source ina jta-data-source element, as the following example
shows:

L I R R T R R R R T I T R R R R R R R R R I R R R R R R R e R R I R 1
1

1
<persistence-unit name="EmployeeService"> .
<jta-data-source>jdbc/EmployeeServiceDS</jta-data-source> .
</persistence-unit> !
1

Typically, you would use the JNDI access to the data source. Make this data source available by configuring
it in a server-specific configuration file or management console.

For more information, see the following sections of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)

180 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

181 of 186

m Section 6.2.1.2 "transaction-type"
m Section 6.2.1.4 "provider"
m Section 6.2.1.5 "jta-data-source, non-jta-data-source"

How to Specify Mapping Files

Apply the metadata to the persistence unit. This metadata is a union of all the mapping files and the
annotations (if there is no xml-mapping-metadata—-complete element). If you use one mapping
orm.xml file) for your metadata, and place this file in a META-INF directory on the classpath, then you do
not need to explicitly list it, because the EclipseLink persistence provider will automatically search for this
file and use it. If you named your mapping files differently or placed them in a different location, then you
must list them in the mapping-file elements in the persistence.xmnl file, as the following example
shows:

I I il 1
1

kpersistence-unit name="EmployeeService">

: <jta-data-source>jdbc/EmployeeServiceDS</jta-data-source>

X <mapping-file>META-INF/employee service queries.xml</mapping-file>
, </persistence-unit>

1

Note that the orm.xm1 file is not listed in the previous example, because the persistence provider finds it
by default.

For more information, see the following:

m Section 6.2.1.6 "mapping-file, jar-file, class, exclude-unlisted-classes" of the JPA Specification
(http://jcp.org/en/jsr/detail ?1d=220)

How to Specify Managed Classes

Typically, you put all of the entities and other managed classes in a single JAR file, along with the
persistence.xml file in the META-INF directory, and one or more mapping files (when you use XML

mapping).

At the time EclipseLink persistence provider processes the persistence unit, it determines which set of
entities, mapped superclasses, and embedded objects each particular persistence unit will manage.

At deployment time, EclipseLink persistence provider may obtain managed classes from any of the four
sources. A managed class will be included if it is one of the following:

m Local classes: the classes annotated with @Entity (see Section 8.1 "Entity" of the JPA Specification
(http:/jcp.org/en/jsr/detail2id=220)), @MappedSuperclass or @Embeddable in the deployment
unit in which its persistence.xml file was packaged.

Note: If you are deploying your application in the Java EE environment, not
EclipseLink persistence provider, but the application server itself will discover local
classes. In the Java SE environment, you can use the exclude-unlisted-
classes element (see Section 6.2.1.6 "mapping-file, jar-file, class, exclude-unlisted-
classes" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)) to enable this
functionality—EclipseLink persistence provider will attempt to find local classes if you
set this element to false.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

182 of 186

= Classes in mapping files: the classes that have mapping entries, such as entity (see Section
10.1.2.10 "entity" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)), mapped-
superclass (see Section 10.1.2.11 "mapped-superclass" of the JPA Specification (http://jcp.org
/en/jsr/detail?id=220)) or embeddable (see Section 10.1.2.12 "embeddable" of the JPA
Specification (http://jcp.org/en/jsr/detail?id=220)), in an XML mapping file.

If these classes are in the deployed component archive, then they will already be on the classpath. If
they are not, you must explicitly include them in the classpath.

m Explicitly listed classes: the classes that are listed as class elements in the persistence.xml
file.

Consider listing classes explicitly if one of the following applies:

m there are additional classes that are not local to the deployment unit JAR. For example, there is
an embedded object class in a different JAR that you want to use in an entity in your
persistence unit. You would list the fully qualified class in the class element in the
persitence.xml file. You would also need to ensure that the JAR or directory that
contains the class is on the classpath of the deployed component (by adding it to the manifest
classpath of the deployment JAR, for example);

® you want to exclude one or more classes that may be annotated as an entity. Even though the
class may be annotated with the @Ent ity annotation, you do not want it treated as an entity in
this particular deployed context. For example, you may want to use this entity as a transfer
object and it needs to be part of the deployment unit. In this case, in the Java EE environment,
you have to use the exclude-unlisted-classes element (see Section 6.2.1.6
"mapping-file, jar-file, class, exclude-unlisted-classes" of the JPA Specification (http://jcp.org
/en/jsr/detail?id=220)) of the persistence.xml file-the use of the default setting of this
element prevents local classes from being added to the persistence unit;

® you plan to run your application in the Java SE environment, and you list your classes
explicitly because that is the only portable way to do so in Java SE (see How to Perform an
Application Bootstrapping).

m Additional JAR files of managed classes: the annotated classes in a named JAR file listed in a
jar-file element (see Section 6.2.1.6 "mapping-file, jar-file, class, exclude-unlisted-classes" of the
JPA Specification (http://jcp.org/en/jsr/detail?id=220)) in the persistence.xml file.

You have to ensure that any JAR file listed in the jar—file element is on the classpath of the
deployment unit. Do so by manually adding the JAR file to the manifest classpath of the deployment
unit.

Note that you must list the JAR file in the jar-file element relative to the parent of the JAR file in
which the persistence.xml file is located. This matches what you would put in the classpath
entry in the manifest file. The following example shows the structure of the emp .ear EAR file:

1
lemp.ear
: emp-ejb.jar

1 META-INF/persistence.xml

: employee/emp-classes.jar

: examples/model/Empoyee.class

The following example shows the contents of the persistence.xml file, with the jar-file element
containing "employee/emp-classes.jar" to reference the emp-classes. jar inthe employee directory in
the EAR file:

<jta-data-source>jdbc/EmployeeServiceDS</jta-data-source>

! 1
kpersitence-unit name="EmployeeService"> .
! 1
! 1
X <jar-file>employee/emp-classes.jar</jar-file> .
! :
! 1

</persitence-unit>

You may choose to use any one or a combination of these mechanisms to include your managed classes in
the persistence unit.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

For more information, see How to Deploy an Application to Generic Java EE 5 Application Servers.

How to Add Vendor Properties

The last section in the persistence.xml file is the properties section. The properties element (see
Section 6.2.1.7 "properties" of the JPA Specification (http://jcp.org/en/jsr/detail?id=220)) gives you the
chance to supply EclipseLink persistence provider-specific settings for the persistence unit.

This example shows how to add EclipseLink-specific properties.

Using EclipseLink Persistence Provider Properties

1
Kpersitence-unit name="EmployeeService'">

<properties>
<property name="eclipselink.logging.level” value="FINE"/>

<property name="eclipselink.cache.size.default" value="500"/>
</properties>
</persitence-unit>

For more information, see the following:

= What You May Need to Know About Using EclipseLink JPA Persistence Unit Properties
m Using EclipseLink JPA Extensions

How to Set Up the Deployment Classpath

To be accessible to the EJB JAR, WAR, or EAR file, a class or a JAR file must be on the deployment
classpath. You can achieve this in one of the following ways:

m Put the JAR file in the manifest classpath of the EJB JAR or WAR file. Do this by adding a classpath
entry to the META-INF/MANIFEST . MF file in the JAR or WAR file. You may specify one or more
directories or JAR files, separating them by spaces. The following example shows how the manifest
file classpath entry adds the employee/emp-classes. jar file and the employee/classes
directory to the classpath of the JAR file that contains the manifest file:

m Place the JAR file in the library directory of the EAR file—this will make this JAR file available on the
application classpath and accessible by all of the modules deployed within the EAR file. By default,
this would be the 1ib directory of the EAR file, although you may configure it to be any directory in
the EAR file using the 1ibrary-directory element in the application.xml deployment
descriptor. The following example shows the application.xml file:

:<application cel>
1

: <library-directory>myDir/jars</library-directory>
:</application>

g -

What You May Need to Know About Persistence Unit Packaging Options

183 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

184 of 186

Java EE allows for persistence support in a variety of packaging configurations. You can deploy your
application to the following module types:

= EJB modules: you can package your entities in an EJB JAR. When defining a persistence unit in an
EJB JAR, the persistence.xml file is not optional-you must create and place it in the
META-INF directory of the JAR alongside the deployment descriptor, if it exists.

= Web modules: you can use WAR file to package your entities. In this case, place the
persistence.xmnml file in the WEB-INF/classes/META-INF directory. Since the
WEB-INF/classes directory is automatically on the classpath of the WAR, specify the mapping
file relative to that directory.

m Persistence archives: a persistence archive is a JAR that contains a persistence.xml file in its
META-INF directory and the managed classes for the persistence unit defined by the
persistence.xml file. Use a persistence archive if you want to allow multiple components in
different Java EE modules to share or access a persistence unit. The following example shows how to
package entities in a persistence archive:

:emp.ear

: emp-persitence.jar

1 META-INF/persistence.xml

. META-INF/orm.xml

1 examples/model/Employee.class

. examples/model/Phone.class

: examples/model/Address.class

' examples/model/Department.class
: examples/model/Project.class

Once you created a persistence archive, you can place it in either the root or the application library directory
of the EAR. Alternatively, you can place the persistence archive in the WEB-INF/1ib directory of a WAR.
This will make the persistence unit accessible only to the classes inside the WAR, but it enables the
decoupling of the definition of the persistence unit from the web archive itself.

For more information, see Section 6.2 "Persistence Unit Packaging" of the JPA Specification (http://jcp.org
/en/jsr/detail71d=220) .

What You May Need to Know About the Persistence Unit Scope

You can define any number of persistence units in single persistence.xml file. The following are the
rules for using defined and packaged persistence units:

m Persistence units are accessible only within the scope of their definition.
m Persistence units names must be unique within their scope.

For more information, see Section 6.2.2 "Persistence Unit Scope" of the JPA Specification (http://jcp.org
/en/jsr/detail71d=220) .

How to Perform an Application Bootstrapping

Outside of a container, use the createEntityManagerFactory method of the
javax.persistence.Persistence class to create an entity manager factory. This method accepts a
Map of properties and the name of the persistence unit. The properties that you pass to this method are
combined with those that you already specified in the persistence.xml file. They may be additional
properties or they may override the value of a property that you specified previously.

11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

Note: This is a convenient way to set properties obtained from a program input, such
as the command line.

This example shows how to take the user name and password properties from the command line and pass
them to the EclipseLink persistence provider when creating the EntityManagerFactory.

Using Command-Line Persistence Properties

public static void main (String[] args) {
Map props = new HashMap () ;
props.put ("eclipselink.jdbc.user", argsl[0]);
props.put ("eclipselink.jdbc.password", argsl[l]);
EntityManagerFactory emf = Persistence.createEntityManagerFactory ("Emph

emf.close();

For more information, see the following:

m Section 7.2 "Bootstrapping in Java SE Environments" of the JPA Specification (http:/jcp.org/en/jsr
/detail?1d=220)
m Application-Managed Entity Manager

Deploying an EclipseLink JPA Application

Deployment is the process of getting the application into an execution environment and running it.
For more information, see the following:

Packaging an EclipseLink JPA Application

How to Specify Managed Classes

Creating EclipseLink Files for Deployment

Deploying an EclipseLink Application

Chapter 7 "Container and Provider Contracts for Deployment and Bootstrapping" of the JPA
Specification (http://jcp.org/en/jsr/detail?1d=220)

How to Deploy an Application to OC4J

After packaging, you deploy your EclipseLink JPA application to OC4J to execute it and make it available
to end users.

You can deploy from a Java EE development tool such as JDeveloper or Eclipse.

185 of 186 11/25/2009 2:46 PM

EclipseLink/UserGuide/JPA/Print Version - Eclipsepedia http://wiki.eclipse.org/index.php?title=EclipseLink/UserGuide/JPA/Print...

How to Deploy an Application to Generic Java EE S Application Servers

Each persistence unit deployed into a Java EE container consists of a single persistence.xml file, any
number of mapping files, and any number of class files.

Note: If you are deploying to JBoss 4.2 server, refer to How to Configure JPA
Application Deployment to JBoss 4.2 Application Server.

Copyright Statement
Retrieved from "http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Print_Version"

Categories: EclipseLink User's Guide | Release 1 | Concept | JPA | Task | EclipseLink User's Guide/JPA

Home

Privacy Policy
Terms of Use
Copyright Agent
Contact

About Eclipsepedia

Copyright © 2009 The Eclipse Foundation. All Rights Reserved
This page was last modified 19:45, 25 November 2009 by James .

This page has been accessed 4 times.

186 of 186 11/25/2009 2:46 PM

