THALES

@ EGF Tutorial

=
o
wi
)
7]
©
Q
c
@
()
o
@
—
o)
=3
—
S
@)
%]
<o
©
e
'_
|
L
O
|

Benoit Langlois — Thales/EPM

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

Agenda (©

_I
@ Introduction
@ EGF Structure
- @ Pattern

@ EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

THALES

. What is EGF? (©

» EGF (Eclipse Generation Factories) is an Eclipse open source
project under the EMFT project.

» Purpose: provide a model-based generation framework.
» Operational objectives:
» Supporting complex, large-scale and customizable generations

» Promoting the constitution of generation portfolios in order to
capitalize on generation solutions

» Providing an extensible generation structure

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

@ EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H A L E s

. Objective of this tutorial ©

Understanding:

e The EGF Structure, with:

» Activity, Factory component, Task, Production plan
« EGF Patterns

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

@ EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H A L E s

Agenda (©

_I
@ Introduction
@ EGF Structure
- @ Pattern

@ EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

THALES

| EGF Structure (©

This following slides present snapshots of the EMF Wrapper provided by
EGF, which can be activated by a right-click on a genmodel.

There is one generation step for model, edit, editor, test, and
documentation generation.

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

@ EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H A L E s

: Example — EMF Wrapper @

Library.fcore file Main Factory Component

lcontains

= U lbrary.genmadel EMF Wrapper [Factory Component]

w45 [Viewpoint Container)

=% [Production Plan]
@2 [Orchestration Parameter Container]
l:il-dg [Production Plan Invocation] -= EMF Model Wrapper [Task Java])
. =g [Invocation Contract Container]
|z [Invocation Contract] -> genModelURI [In] [Contract]
@4 [Production Plan Invocation] -> EMF Edk Wrapper [Task Javal] ¢ Task and Factory component invocation orchestration
-4 [Production Plan Invocation] -= EMF Editor Wrapper [Task Java]
@& [Production Plan Invocation] -= EMF Test Wrapper [Task Java]
!Jjﬁ [Production Plan Invocation] -» EmfDocGenHtml [Factory Component]|

[l St e '

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

@ EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H A L E s

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

: Example — EMF Wrapper @

Library.fcore file Java Task usage

lcontains

= U lbrary.genmadel EMF Wrapper [Factory Component]

w45 [Viewpoint Container)

=12 [Production Plan]
[# [Orchestration Parameter Container]
=4 [Production Plan Invocation] -= ENE Model Wrapper [Task Java)
B [Invocation Contract Container]
i -2 [Invocation Contract] -> ger|ModelURIZIn] [Contract]
« [Production Plan Invocation] -> EMF Edit Wrdpper [Task Java]
-4 [Production Plan Invocation] -= EMF Editor Wrapper [Task Java]
[Production Plan Invocation] -> EMF Test Wriipper [Task Java]
#-# [Production Plan Invocation] -> EnjfDocGenHtml [Factory Component]

[l St e '

Task reference Contract value for a contract (= task parameter)

|B: form:/pluginforg.eclipsg egf.emf.wrapper/fcs/EM...: \eclipse\ws\egf-local\org.eclipse.egf.emf.wrapper]
®- 4 EMF Wrapper [Factdhy Component]) h - B
=Y EMF Model Wrapper [Task Java]
= [Contract Contamer]
=% genModelURI [In] [Contract]
= [Type Domain URI]
= [ay EMF Edit Wrapper [Task Java]
- mp EMF Editor Wrapper [Task Java)
- ;g EMF Test Wrapper [Task Java]

[2 Problems | @ Javadoc |[&, Declaration | & Console | = Properties 2 HlelmE k70

Property Value _ -
= Data implementation (& Task Java Class

Value org.eclipse.egf.emf.wrapper.EgfEmfModelTask @ >
= Deocumentation

Description
= Identifier

D
= Identity

Name '= EMF Model Wrapper el
EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 T H A L E s

r-'
i

1=
1Ml

r-'
i

_EOutcP-KEdEBIeGORKg98A

21

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

®

Example — EMF Wrapper @

Library.fcore file

lcontains

= U lbrary.genmadel EMF Wrapper [Factory Component]

43 [Viewpoint Container]
=12 [Production Plan]

[[Orchestration Parameter Container]

=4 [Production Plan Invocation] -= EMF Model Wrapper [Task Java)

=g [Invocation Contract Container]

[#: [Invocation Contract] -> genModelURI [In] [Contract]

#. [Production Plan Invocation
-4, [Production Plan Invocation
#. [Production Plan Invocation
= [Production Plan Invocation

[l St e '

-= EMF Edit Wrapper [Task Java]

-= EMF Editor Wrapper [Task Java]

-= EMF Test Wrapper [Task Java]

-»= EmfDocGenHtml [Factory Component]

Factory component reference

= b EmfDocGenHtml [Factory Component]

={E [Contract Container] 3

= idomain [In] [Factory Component Contract] :
- = [Type Domain URI]
=+ projectName [In] [Factory Component Contract]
83 [String]
=-fE outputFolder [In] [Factory Component Contract]
- #2 [String]
=45 [Viewpoint Container]
=% [Pattern Viewpoint]
-7 object.docgen.html [Library]
- emf.docgen.html [Library]
= emf.docgen.html.forStrategy [Library]
7 ClassReport [Pattern]
= DataTypeReport [Pattern]
72 EnumerationReport [Pattern]
=« PackageReport [Pattern]
=& [Production Plan]

|

&

-, Ensure project existence [Production Plan Invocation] -= CreateProject [Task Java]
#-#, Create the html document [Production Plan Invocation] -> Model driven pattern strategy task - Doc Gen [Task Java]

' Factory component contracts

[Pattern viewpoint

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

Factory Component usage

} Task invocation orchestration

THALES

| EGF Structure (©

Activity

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H l.\ L E 5

. Activity — Definition (€©)

 An activity is the abstract class of any EGF generation
unit
» Factory component and Task are activities

e Activity storage
» Activities are stored in fcore files
» The same fcore file contains one to several activities

o Activity properties
» Contract declaration
» Ability to be invoked and to execute a generation action

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

@ EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H A L E s

: Activity Hierarchy @

Activity
JAN

Factory Task
Component 4

[Language]
Task

Java Task

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

(12) EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H ,.\ L E s

: Activity Properties @

o 0-1 Contract
ACtIVIty Container

*Icontracts
0-1

Contract [*—— Type Instance
; - name - value

§ - mode (In, Out, In/Out)

: - mandatory v

Type

@ EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H ,.\ L E s

Services/EPM

ion Factories — Thales Corporate

EGF: Eclipse Generat

N
~

EGF Structure (©

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

SN Factory Component

THALES

: Central Role of Factory Component @

[Execution —\

Test

Deployment

/_ Development

' Developer
Domain
Expert

Architect

Target platform

Build chain

Portfolio
variability

Capitalization

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

@ EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H Al E 5

. Factory Component (©

!Ev' » Unit of generation with a clear objective of generation

» Unit of generation with a clear contract

» Assembly of factory components
» Delegation
» Creation of heterogeneous and complex generation chains

» EXxplicit declaration of generation data organised by viewpoints
» Orchestration of the generation with a production plan

» Factory Component Lifecycle: edition and execution, including
validation

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H A L E s

| Factory Component Structure (©

AL | Factory Component

—>E Contract container

— A0 Viewpoint container

s/EPM

4L | Production Plan

— Thales Corporate Service

Factories

ation

EGF: Eclipse Gener

@ EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H l.\ L E 5

s/EPM

— Thales Corporate Service

Factories

ation

EGF: Eclipse Gener

=
[e¢]

Factory Component Structure (©

AL | Factory Component

—>§ Contract container

—>a Contract

| Viewpoint container

‘Fg Production Plan

Definition:

» Contract: Factory Component parameter

A contract has a type, a passing mode (In/Out/In_Out), a default value or
not is mandatory or optional

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H l.\ L E s

s/EPM

— Thales Corporate Service

Factories

ation

EGF: Eclipse Gener

=
©

Factory Component Structure (©

AL | Factory Component

Contract container

| Viewpoint container

4L | Production Plan

Definition:
* Viewpoint: area to declare generation perspective data
« Examples of viewpoint:

- Available today: domain declaration, pattern

- Candidates: licensing, feature model

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H l.\ L E s

| EGF Structure (©

010

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H l.\ L E s

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

@

Task — Definition @

« Atask is an atomic generation unit

e Task declaration:
» A taskis declared in a fcore file

» Java task is a kind of Task. With the extensibility mechanism, other
Task types could be introduced (e.g., Ruby task).

« Task implementation:

» An implementation is associated to a task

» A JavaTask is implemented by a Java class (which implements

ITaskProduction)

Java Task

1

®

Implementation

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

>

Java Class

THALES

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

N
N

EGF Structure (©

f@ Production Plan

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

THALES

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

N
w

Factory Component Structure @

Al | Factory Component

—— 1~ Generation Viewpoint

Orchestration
% Production Plan

4). FC invocation

1_01| Java Task

Definition:
A production plan is a simple kind of generation orchestration

* Production Plan: A generation orchestration is a sorted list of factory
component or generation task invocations. It describes the successive
generation steps, which either call factory components or generation
tasks.

» The factory component/task contracts are valued by factory
component/task invocation values. Same principle than the parameter

when va method is called.
EGF Tuto\r{g(l)g%|s© 2010eby T%I(‘e]s;ama%e ava?EbISHde%h%%PLevEI.O T H l.\ L E s

: Activity and Production Plan @

invocation « - 0- Contract
> Activity [@® = Container
Factory Task Contract
Component
ﬁcontract
0-1

Production Plan

i

—0| Activity Invocation |@ “>{ Invocation Contract

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H ,.\ L E s

| In/Output relationships ©

=l Pricer Factory Component [Factory Component]
= £ [Contract Container]
f5] guantity [In] [Factory Component Contract]
fz] price [In] [Factory Component Contract]
> amount [Out] [Factory Component Contract]
= [Production Plan]
-+, [Production Plan Invocation] -= FC - UCL.3 - PricerComputerTask [Task Java]
=+ [Invocation Contract Container]
[[Invocation Contract] -= quantity [In] [Contract]
|#: [Invocation Contract] -= price [In] [Contract]
® & [Invocation Contract] -= amount [Out] [Contract] @
=+, [Production Plan Invocation] -= FC - UC1.3 - PricerDisplayTask [Task Java]
=& [Invocation Contract Container]
[#: [Invocation Contract] -= quantity [In] [Contract]
|- [Invocation Contract] -= price [In] [Contract]

{#: [Invocation Contract] -» amount [In] [Contract] <

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

@ EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H l.\ L E s

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

In/Output relationships

=l Pricer Factory Component [Factory Component]
= £ [Contract Container]
f5] guantity [In] [Factory Component Contract]
fz] price [In] [Factory Component Contract]

> amount [Out] [Factory Component Contract]

= [Production Plan]

-+, [Production Plan Invocation] -= FC - UCL.3 - PricerComputerTask [Task Java]
=+ [Invocation Contract Container]

[[Invocation Contract] -= quantity [In] [Contract] (
|#: [Invocation Contract] -= price [In] [Contract]

® & [Invocation Contract] -= amount [Out] [Contract] @

=+, [Production Plan Invocation] -= FC - UC1.3 - PricerDisplayTask [Task Java]
=& [Invocation Contract Container]

[#: [Invocation Contract] -= quantity [In] [Contract]

|- [Invocation Contract] -= price [In] [Contract]

{#: [Invocation Contract] -» amount [In] [Contract] <

Quantity’s Properties

Property Value
= Behaviour

Invoked Contract £l quantity [In] [Contract]
= Connector

Source Invocation Contract

Target Invocation Contract
= Documentation

Description
= Factory Component

Factory Compoenent Contract &I quantity [In] [Factory Component Contract]
= Identfier

D '= _RIhgoBvjEd-WELG6]Y5sHW
= Orchestration

Orchestration Parameter

=
i

Amount’s Properties

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

Property Value
= Behaviour

Invoked Contract I amount [In] [Contract]
= Connector

Source Invocation Contract

Target Invocation Contract
= Documentation

Description
= Factory Component

Factory Component Contract
= Identifier

D 'S _dQfdIBviEd-WELEE]YSsHW
= Orchestration

Orchestration Parameter

[[Invocation Contract] -> amount [Out] [Contract]

=
111}

THALES

Agenda (©

_I
@ Introduction
@ EGF Structure
- @ Pattern

@ EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

THALES

: Pattern — Definition @

e Definition:
» A pattern is a solution to a recurrent generation problem

e Purpose
» Applying a systematic behavior onto a resource

» Clearly dissociating the specification (external view) from the
Implementation (internal view) of the behavior

» Reusing and customizing a pattern in different contexts

» Supporting multilingual patterns in order to apply the best
programming language to a situation, and then supporting multi-
paradigm (M2T, M2M, T2M, T2T)

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H l.\ L E s

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

N
©

EGF Structure (©

@] Pattern Structure

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

THALES

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

w
o

Pattern — External View @

—— —
— —_—

<~ Super- e

- rattern __-

/’_—J_h\

~ AN .

query N delegation
TYP€ 5 nparameter Y Pattern 4
Language 1 nature
Definition:

o ——

-
Ve N

» guery/parameter: query for object selection onto a resource

 nature: language used for the pattern implementation

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

THALES

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

w
=

Pattern — External View @

—— —
— —_—

—

(/ ECIassif\\)

Example W
ECore
Resource
T
g’ In - ~EStructural™ >
Query , EClass delegation <)
EClass Slement & Gen) > Feature)
.- B -~ agaeen -
Jet nature

» The EClassGen pattern is applied on a Ecore resource

» Objects selected on the ecore resource: EClass instances

* It specializes the EClassifierGen pattern

* It applies a model-to-text generation in Jet

* Its also applies a generation on its features by delegation to the
EStructuralFeatureGen pattern

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

THALES

Pattern — External View @

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

w
N

—— —
— —_—

<~ Super- \
- rattern __-

N

Constraint [preCondition
TyP€ |5 nvariable
/’—J_h\ ——————
~-) i =~
very N delegation ~)
Type 15 npargmetﬁr (_ Pattern | -
. \\ // \\ ///
Language 1 amre
Definition:

 preCondition/Constraint: constraint to be verified before application
« variable/Type: local variable declaration for the pattern implementation

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H l.\ L E s

Pattern — Implementation View @

Methods which implement the pattern Order to execute the methods

i Implementation

Methods Orchestration
Pattern methods: Implementation methods: Organize method calls:
i} body = body - [MethodCal]
—> = header
— Eint g
i& preCondition 2
i footer v
%
&
Variables

Set up some variable avaiable in all methods:

Name Type

| Overview | Spedification | Implementation |

header: typically used for the Jet header
init: method for pattern initialization (e.g., variable initialization)

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

®

A method editor allows to edit pattern methods

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

THALES

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

w
~

Pattern (©

Pattern Execution

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

THALES

: Pattern execution Big Picture @

Pattern Execution Process

e ————

Pattern
Strategy

\\~_——-//

Patterns selection Way to apply patterns

Resource, B Pattern execution

e.g. Model S engines, e.g. for Jet, Java
Pattern Execution
onto a resource

[]
Result -I-q =~ Optional - Pattern
N reporter for final form

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

@ EGF Tutorial 0.1.0 | © 2010 by ThEIJLI:eISI?maldngtva§aHLtunde+.A EPL v1.0 T H A L E s

: Pattern Strategy @

e Definition: Way to apply patterns against a resource

« Examples of strategies:

» Model-driven pattern strategy: in-depth navigation over a model,
and for each model element, applying a set of patterns

» Pattern-driven strategy: for each pattern, applying the pattern for
each model element element

» [Data type]-driven strategy: generalization of the approach; instead
of model, it could be any type of resource (e.g., file directory)

e Strategy parameters:

» Resource visitor: the “for each” navigation is a specific case; the
visitor function specifies how to navigate over a resource.
Examples: in-large navigation, considering only Eclassifiers

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H l.\ L E s

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

w
J

Pattern (©

Pattern Composition

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

THALES

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

w
[e¢]

Pattern Relationships @

Pattern inheritance Pattern extension
\/’ —\:) \/’ ‘\:)
ZF Textends
a a
AN / AN /

- ~ -

—_——_— —_——_—

(not available yet)

Pattern delegation Pattern injectio Multilingual call
@« e > Q@ € @ @ —«
ol ol—

o ———i—

Pattern callback

a .
\ 7
~

e

The Pattern orchestration specifies the pattern relationships
Possibility to combine different pattern relationships in the same orchestration

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H I.\ L E s

Pattern Inheritance @

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

w
©

Pattern inheritance Case 1. Reuse of super-pattern methods
- __,/) Same mechanism than Class inheritance
ﬁ& Selection of methods from the super-pattern hierarchy
a
_’//
Example Hello
- sayHello
- finish
Hello World
- body

Orchestration of HelloWorld

Orchestration

Organize method calls:
| & SayHelo - [MethodCal]
£%body - [MethodCal]
£*finish - [MethodCall]

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H l.\ L E s

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

N
o

Pattern Inheritance @

Pattern inheritance

—_——— .

P~ ~
\\\ __//)
T
()
N /

Case 2. Reuse of super-pattern orchestration

Reuse of the orchestration defined in the super-pattern
This abstracts the super-pattern orchestration

This avoids rewriting pattern orchestration

Just adding the methods of the current pattern

Exam P le Orchestration
Organize method calls:

—> | & [Cal to super pattern orchestration]
%¢ body - [MethodCal]

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H A L E s

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

I
=

Pattern Delegation @

Pattern delegation Case. Problem decomposition / Reuse of pattern
//’——\\ /"__\\‘
- - - The same pattern is reused in different pattern contexts
A T~ | - The orchestration of the called pattern is applied
- - - The Pattern caller provides parameter values to the called pattern

- The parameter values are statically declared at the pattern definition

Example 1 e "~

—_—_—

Orchestration

Organize method calls:

| £¢ SayHello - [MethodCall]
¢ body - [MethodcCal]
— | | Bl HelloFriends - [PatternCall]
¢ finish - [MethodCall]

Example 2

—— ——
~

4 Display ~ ™~

—— —

-~ Hello \\)

~—_——

e ———

g Display

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

~~. 3

Display >\
~<_Annotations __~

THALES

: Pattern Injection @

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

N
)

Pattern injection Case. Reuse of pattern with a dynamic resolution of the
a8 "~ A T~ Injected context
___// \\\ ’//‘
(’——\\) | - A Pattern injection corresponds to a Pattern Delegation, but
-~ - The parameter values are dynamically set at pattern execution
Example Orchestration

Organize method calls:

| & body - [MethodcCall]
= setupVariable - [MethodcCal]
— | | &z ForInjectionPattern -= variable - [PatternInjectedCall]

In this example, the “setupVariable” method
sets the injection context

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H l.\ L E s

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

N
w

Multilingual Call (€

Multilingual Call Case. Pattern delegation where implementation languages
g -_ad are different
-~ e N /

This corresponds to a Pattern Delegation where Pattern natures are
different. For instance, a Pattern with a Jet nature calls a Pattern with a
Java nature in order to differently process the same resource.

It is impossible to have different natures in the same Pattern inheritance
hierarchy.

Example

4 EClass ™~
“<__Report__.7

~

—_————
~
~

-~ Measure S,
EClass)

—_—

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0 I H l.\ L E s

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

N
N

Pattern Callback @

(
\

P

~

Pattern Callback

o ——

—_——_—

-

—

~N

-

—>

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

Case 1. Applying a Java call

The callback indicates where the callback on a Java Class is applied

Example
Pattern orchestration

Orchestration

Organize method calls:

=¢ body - [MethodCal]
—— | | &*[Calback to Strategy/Task]

Specification of the Java Class in the production plan

=2 [Production Plan]
=-# [Production Plan Invocation] -= Pattern Task [Task Java]
=& [Invocation Contract Container]
[#- [Invocation Contract] -= pattern.id [In] [Contract]
l#: [Invocation Contract] -= domain [In] [Contract]
e d [#: [Invocation Contract] -=> pattern.cal.back.handler [In] [Contract]

THALES

Pattern Callback @

Pattern Callback Case 2. Combination with the Pattern Strategy
(: :)—> A strategy determines how to apply patterns and how to navigate over

a resource. In an orchestration, a callback is the moment before and
after a cycle of pattern application, and allows to discriminate the
methods to apply before and after it.

Example

Scenario:

The following generation result can be realized with a callback.

- The model-driven strategy navigates over the model

- There is a pattern for each kind of model element with the following
pattern orchestration

A generation action is realized before (open) and after (close) the

callback.
<EPackage name="P"> Orchestration
<EClass name="C1"> Organize method calls:

<EAttribute = “A1"> | & before - [MethodCall]

o —» | &%[Calback to Strategy/Task]
</EAttribute = “A1"> =i after - [MethodCall

</EClass name=“C1">
</EPackage name="P">

Generation result

EGF: Eclipse Generation Factories — Thales Corporate Services/EPM

N
2]

EGF Tutorial 0.1.0 | © 2010 by Thales; made available under the EPL v1.0

THALES

