Handling Conditional Compilation In CDT’s Core

Chris Recoskie
Team Lead
IBM CDT Team

© 2007 IBM Corporation and others; made available under the Eclipse _

Problem Statement

= The C Preprocessor (Cpp) allows #i f def FOO

one to add conditional foo();
compilation directives which #el se
cause the code to potentially be bar () ;

different depending on the state #endi f
of defined macros
= CDT currently only parses and
indexes one compilation path
= Searches and refactorings can
miss elements in the inactive
code
= How to solve this?

2 © 2007 IBM Corporation and others; made available under the Eclips_

Problems With The Preprocessor

Conditional directives can appear at
any arbitrary point within a code
fragment, provided that the
conditional directives are the only
thing that appears on a given line of
source text
Branches can contain arbitrary sized
fragments of code that are not
syntactically correct in isolation
»They do not have to appear on the

well formed boundaries of elements of
the language grammar

»They can “break” constructs
In the example to the right, what is
the type of y? It depends.
Variables might be macros!

[* define a 32-bit int on
various platforns */
#ifdef HAS 32 BIT_INT
I nt
#endi f
#i fdef HAS 16 BI T I NT
| ong
#endi f
Y,

#i f def USE_MACRO _CONSTANTS
#define x 42

#el se
Int x = 42;

#endi f

y =X

© 2007 IBM Corporation and others; made available under the Eclips_

Problems With The Preprocessor

= Parameterized macros can #defi ne ST(VAR) VAR##St at us
concatenate text
= |n the right hand example, the i nt X;
variables completeStatus and switch(x) {
errorStatus get set depending on case O:
runtime conditions ST(conplete) = 1;
= What if such macros are defined br eak;
differently in different branches case 1:
conditional directives? The ST(err) = 1;
referenced variables can be br eak;
completely different. }

#i f def USE_STATUS

#define ST(VAR) VAR##St at us
#el se

#defi ne ST(VAR) VAR

#endi f

4 © 2007 IBM Corporation and others; made available under the Eclips_

Q-

Problems With The Preprocessor

= Conditional directives can have zi]1: ndeg\lUEASSENELY__
binary expressions PG> .
y exp # include <linux/conpiler-
gcc+. h>

#elif _ GNUC__ ==
include <linux/conpiler-
gcc3. h>
#elif _ GNUC__ ==
include <linux/conpiler-
gcc2. h>
#el se
error Sorry, your conpiler is
too ol d/ not recognized.
#endi f
#endi f

5 © 2007 IBM Corporation and others; made available under the Eclips_

Solution #1: Parse All Configurations

= Could allow the user to enumerate all configurations that they care
about.

= Parse the entire code with each configuration separately to build up
separate ASTs and indices, then apply operations to all of them

= Pros:

» Simple to implement

= Cons:
» Operations get slow and memory intensive the more configs you have
» Combinatorics

* 5 binary macros means 32 possible configs
» What if they care about all configurations?

* Non-binary macros means unbounded number of configs

6 © 2007 IBM Corporation and others; made available under the Eclips_

Solution #2 — Support Conditional Directives in C/C++
Grammar

Put rules in the grammar for matching conditional directives
Place nodes in the AST corresponding to the directives

» Node has sub-trees for each branch of the conditional
= Pros:

» Represents all possible program configurations
= Cons:

» Directives can appear between any arbitrary tokens

» Makes the grammar exceedingly complex
» How to handle directives that break syntactic constructs?

* Would need nodes with smaller granularity than current AST
o More like a parse tree
* Don’t really want visitors having to do their own parsing

7 © 2007 IBM Corporation and others; made available under the Eclips_

-

Solution #3: Garrido-Style Pseudo-Preprocessing and
Conditional AST

= AST contains all alternatives that appear as a result of
conditional directives

= Nodes are marked with conditions which indicate under what
circumstances the node applies

» Nodes are not children of nodes for directives
= Pros:

» Complete (but compact) representation of the code

» Can always safely cache headers
= Cons:

» Requires a lot of rework of CDT parsers and APIs

© 2007 IBM Corporation and others; made available under the Eclips_

3 D SX
. HX
#define M1 ...

= Tokenize the Cpp directives along
with the regular code

= Generate include dependency
graph (with conditional edges)

= Macro calls are tokenized with a
special macro call token, which is
later resolved by indexing into a IEECNE IO EY ain

macro table

= Macro defined within conditional @fw%éE@fmtmlxgﬁw
compilation directives have their a Macro Defintion a Macro Call
macro table entries marked with

Figure 4.38: Example of nclude dependencies revisited

i1 Program a

Frie an SN File ‘D.c P

= #fC1 #include “B.h" S e True .

Step #1:. Partially Preprocess |#» | .= y e N %
File B.b File D.c File ‘AN Program *

25 File ‘E.c l

stca #include “B.h Program \ frue $

#inolude “A b #include “C.h" File *C.h 3

File C.h File E.e 1

T e Wy v e veeraay - Lt I T e P

#define ER1 errstatus = 1
If ibottom < 0}
ER1;

[ermene) [-] [

Figure 4.9: Macro expansion and token labelling

| WP W PP ViR

Figure 4.41: Entry for a macro whose definition depends on the order of file inclusion

their guarding conditions A gt o -t mramtrand & i g bt BN sl i

= Textthatis not a part of a Cpp Guarding condition : ;
directive is just parsed as a block of Uae e CO-EXEITS onellt :
teXt BO_EXEITS < Seg;?a;g;r:ﬂ ?Ccﬁimn : ;
Lil«?f&:s':ﬁij-efine BO_EXBITS oxooUL' j

j

LR ghne s e gnea e e e B e tnn e T

9 © 2007 IBM Corporation and others; made available under the Eclips_

\

=C ClipSE

Step #2: Parse and Complete Conditional Directives

= Another parser that works on the
output from Step #1

= Run Garrido’s Conditional
Completion Algorithm on directives

»>“Completes” all alternatives of a
conditional so they are syntactically

b .

o seyron f valid C/C++ constructs.

i=0; [=R; i++) or \=U; 1< [) . . .

Sl == *:3@?;0%% } } »Requires detection of certain

FO/EC) ol keywords and punctuation

#endif #endit

Figure 4.29: Case 1 of completing conditionals } »For C:
N s e o s At o o g, P Composite statements

*For loops
*Enums

Semi-colons

»For now all other text is parsed as just
blocks of text

10 © 2007 IBM Corporation and others; made available under the Eclips_

Step #3. Preprocess/Re-tokenize for C/C++

11

Conditionals are tokenized as

a single terminal, with a
condition
When a conditional is

encountered, assume it is
true and push its condition
onto the current condition

stack

On the contained code:

»Run the preprocessor to
expand macros assuming that
the conditions in the condition
stack are true

»Mark tokens with conditions
from condition stack

*Nested conditions are
conjoined

*Compatible conditions
are merged.

CONDITIONAL
__STDC_)

defi ned(

#i fdef _ STDC _
const char * msg;
#el se
char * msg;
#endi f
v

ASTERISK

defi ned(

__SIDC)

CHAR

I def i ned(

__STDC_)

CONST
defined(__STDC)

CHAR
defined(__STDC)

ID:msg
defined(__STDC)

ASTERISK
I defined(__STDC)

CONDITONAL
I defined(__STDC)

ID:msg
! defined(__STDC)

© 2007 IBM Corporation and others; made available under the Eclipse P

Step #4. Parse For C/C++

#ifdef X86_PCoE00
extem int CLOCK_TICK_RATE;
#else
define CLOCK_TICK_RATE 1189200

#endif
TranslationUnit

Cpplfdef
X85_PCasio,

= C/C++ parser
grammar includes
terminals for
conditional directives

CppElse
1 dafined
¥as_PCas00

= Parse and build an
AST.

» AST nodes and
bindings have
conditions on them
based on the
conditionals that
guard them

Figure 5.2: Abstract syntax tree with Cpp directives as nodes

B A S NP e WV e

Ny, o T WA W Y W ¥

12 © 2007 IBM Corporation and others; made available under the Eclips_

Step #4. Index

Binding W declaration
Name: A

Type: int
Condition: defined(FOO)

referenced by

v

referenced by

v

11 (A == 2) le——

Aq paoualajal

Build an index from the AST.

Bindings inherit conditions from the
AST. Note that now there can be
more than one binding
corresponding to a name at a
location.

Queries on the index return all
bindings regardless of whether their
conditions are true in the current
build configuration

Can add convenience methods to
index to filter on given
configurations or conditions

Type: int :
Condition: defined(FOO)

Binding W declaration
Name: A >

13 © 2007 IBM Corporation and others; made available under the Eclips_

‘—ﬁﬁnbgﬁé

Ul Behaviour In Presence of Conditionals

r.

[c] test.cpp &2 . [c] instream 1

e
// Hame : test.cpp
// huthor :

ff Version

/{ Copyright : Your copyright notice

f/ Description : Hello World in C++, Ansi-style
ff

#inclnde <iostcreams
nsing namespace std?

#if FOO > 3
#ifdef BAR

5 int foobar ()
#endif
#endif

-mb/ﬂ-ﬁ\‘fﬁﬁ~‘,ﬁ”‘k,ﬂ“-‘hhj;“‘EJ..'

int main() {
cout << "!!1Hello World!!!™ << endl; // prints !!!Hello Wor

A

retorn 0;
} }
B e S S "’“".“.\."H‘-‘\'-_-\r —— \-t-_‘:,\.h4"_‘_‘________,-"-\;-\‘ __f\\ R~

= Search matches, etc. show hits in all
compilation paths
= Hits shown with their conditional next to
them
= Could specify “condition working sets” to
restrict scope (tie in to build configurations
too)
= Could have an option to only report
matches from the active configuration
»Could maybe parse “the old way” in this
case to make things faster.
ff;” Search &2 =8|
Find references to foobar in Workspace =
T4 R BE ¥ e -
= Eitest
EI[?E sre
=g test.cpp

‘.. @ (global) foobar() when: FOO > 3 && defined(BAR)

14 © 2007 IBM Corporation and others; made available under the Eclipse Publi

- Conditional Compilation 177 days

o~ — Y
— | F}f‘_“_} e - Pseudo Preprocessor 25 days ;
Condition data structuresiaP 5 days ‘
Conditional token class(es) 2 days -
. Grammar for lexer 2 days X
Effo rt R e q u I re d Include Dependency Graph data structure 5 days f
DG build actions 5 days \
WMacro Table data structure Jdays f
Macre Table build actions 3 days ’
= Quick and dirty effort estimates and - Conditional Completion 20 days
work breakdown structure have been Condtional parser 10 days I
d Conditional Completion Algorithm 10 days
Createa. Preprocessor 3 days -
= QOver 8 person-months of effort B — Baws g
reQUired. Grammar changes for conditionals 2 days
>N0t enough resources at IBM to dO thlS Changes to grammar actions to track conditions 3 days g
for Ganymede, but this is a priority for —_ S
IBM for the future, so we can commit to - i ;
Working on thiS post-Ganymede. Changes to binding resolution algorithm 5 days
- Indexer 17 days ;
Changes to indexing framework 2 days i
Changes to PDOM to allow storing conditionals w/ nodes 10 days]
Changes to IndexBindings 5 days ?
- Cmodel 7 days 4
ICElement changes for conditions 5 days z
Cmodel builder 2 days
-u 80 days }
Search 10 days)
Content Assist 10 days
MWawvigation 10 days
Call Hierarchy 10 days
Type Hierarchy 10 days
Class Browser 10 days
Include Browser 10 days
Cmodel Ul representation 10 days ,i
A A e A Ak S g

15 © 2007 IBM Corporation and others; made available under the Eclipse Pu

References

= Garrido, Alejandra, Ph.D. Program Refactoring In The Presence
of Preprocessor Directives

16 © 2007 IBM Corporation and others; made available under the Eclip_

	Handling Conditional Compilation In CDT’s Core
	Problem Statement
	Problems With The Preprocessor
	Problems With The Preprocessor
	Problems With The Preprocessor
	Solution #1: Parse All Configurations
	Solution #2 – Support Conditional Directives in C/C++ Grammar
	Solution #3: Garrido-Style Pseudo-Preprocessing and Conditional AST
	Step #1: Partially Preprocess�
	Step #2: Parse and Complete Conditional Directives
	Step #3: Preprocess/Re-tokenize for C/C++
	Step #4: Parse For C/C++
	Step #4: Index
	UI Behaviour In Presence of Conditionals
	Effort Required
	References

