
© 2009 Eclipse Foundation; made available under the EPL v1.0

Teneo: Integrating EMF & EclipseLink
Model-Driven Development with Persistence

Shaun Smith Martin Taal

Stephan Eberle

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.02

Teneo: Integrating EMF and EclipseLink JPA

 Teneo is...
 Solution for: relational persistence for (EMF) model-driven-

software development

 Mapping of Ecore model to Relational DB
 Override mapping behavior
 Runtime behavior

 Runtime framework that provides integration between EMF and
EclipseLink JPA (Java Persistence API)

E

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.03

Why EMF and JPA?

 Teneo's EclipseLink/EMF runtime integration evolved from a
collaboration between Oracle and Bosch to deal with persisting
very large models.
 e.g., engineering models of Bosch Electronic Control Unit software:

 Definition of up to 4,000 components, 20,000 calibration
parameters, etc.

 ≈ 120 MB of specification data
 XML persistence not adequate
 Solution:

 Put models into relational database

 Use Java standard Java Persistence API for persisting/retrieving

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.04

Eclipse Persistence Services Project–“EclipseLink”

(EclipseLink)

DBWSDBWS

SDOSDO

EISEIS

MOXyMOXy

 JPAJPA

XML Data Legacy SystemsDatabases

Java SEJava SE Java EEJava EE OSGiOSGi SpringSpring

file:///
file:///
file:///
file:///
file:///

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.05

Mapping with Annotations
@Entity public class Customer {

@Id
private String name;
@OneToOne
private Account account;

public String getName() { return name; }
public void setName(String name) {
 this.name = name;
}
public Account getAccount() { return account; }
public void setAccount(Account account) {
 this.account = account;
}

}`

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.06

Mappings in XML

<entity-mappings xmlns="http://java.sun.com/xml/ns/
persistence/orm"

…
 <entity class=“Customer">
 <attributes>
 <id name=“name“/>
 <one-to-one name=“account“/>
 </attributes>
 </entity>
…
</entity-mappings>

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.07

JPA Design vs. Runtime

 Artifacts include:
 Java Classes

 Mapping Metadata

 Database schema

Relational
Database

Java
SE/EE/OSGi

JPA Persistence
Provider

Design Time Runtime

Mapping Metadata

Java Classes

Database Schema

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.08

EclipseLink JPA Summary

 JPA 1.0 compliant implementation
 Delivering the JPA 2.0 Reference Implementation (JSR 317)
 Java EE, Java SE, Web, Spring, and OSGi
 Any JDBC/SQL compliant database
 Schema generation
 Key infrastructure:

 Caching, Locking, Query Framework, Mapping, …

 JDBC connection pooling

 Diagnostics: Logging, Profiling

 Customization callbacks
 Highly Extensible
 … plus many valuable advanced features

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.09

EclipseLink JPA in OSGi

 EclipseLink is available as a set of generic OSGi bundles.
 EclipseLink can run on any OSGi framework--currently being

actively used on both Equinox and Felix.

 Can also be used to build RCP and RAP applications

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.010

EMF Overview

 Eclipse Modeling Framework
 Modeling and Code Generation framework
 Some Specifics:

 XML/XMI persistence

 Notifications

 Bi-directional/Structured Lists

 Several abstractions (dynamic efeature, estore)

 Complete XSD support (choice, list/union, substitution groups)

 Runtime model

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.011

The EMF Persistence Challenge

 JPA is the Java standard for Relational Persistence
 JPA is designed to work with POJOs and standard java.util.*

collection classes but 'default' EMF generated classes do not
conform to the JPA requirements for an Entity (a persistent Java
object).

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.012

EMF Collection Challenges—not java.util.*

 Collection instance variables of generated EMF models are not typed
as one of JPA supported: List, Set, Map, Collection. They are EList or
EMap, e.g.:

protected EList<Writer> writers;

 EclipseLink supports 'custom collection classes' but had to relax JPA
mapping validation to allow for subclasses of List, etc.

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.013

EMF Collection Challenges—ownership, class?

 EMF collection classes are more complex than java.util
collections

 EMF collections know their 'owner', item type, and other
information which must be provided in the constructor--EMF
collections do not provide a no-arg constructor

 The concrete implementation class for a collection varies greatly.
Which class should EclipseLink instantiate when building an
Entity?

 Solution: EclipseLink uses the EMF model to instantiate the
correct collection class for an instance variable collection, e.g.:
EListFactory.eINSTANCE.createEList(owner, attrName)

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.014

EMF Collection Challenges—lazy loading

 EclipseLink lazy loading uses a proxy (ValueHolder) that holds
enough information to query the related object(s).

 EMF collections know their 'owner', item type, and other
information which must be provided in the constructor.

 Solution: Teneo extends EclipseLink with ValueHolders that know
their owner.

 EclipseLink provides lazy ('indirect') collections that implement
java.util. classes but EMF collections are typed EList or EMap.

 Teneo extends EclipseLink with indirect collections that implement
EList and Emap

 Teneo's indirect collections are a type of ValueHolder that know
their owner, item type, etc.

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.015

Relationship Management

 JPA Persistence Providers construct objects from relational data
 EclipseLink has to either work around or disable relationship

management during construction
 EMF initializes custom collection classes in getter

 public EMap<String, Book> getBooks() {
 if (books == null) {

books = new EcoreEMap<String,Book>(
 LibraryPackage.Literals.STRING_TO_BOOK_MAP_ENTRY,
 StringToBookMapEntryImpl.class,
 this,
 LibraryPackage.LIBRARY__BOOKS);

 }
 return books;
}

 Solution:
 EclipseLink sets fields directly through reflection
 EclipseLink gets using getter to leverage lazy loading

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.016

EMF JPA Idioms: eContainer

WriterImpl AddressImpl

eContainer

address

<entity name="Address"
 class="AddressImpl">
 <attributes>

…
 <one-to-one name="eContainer"
 target-entity="WriterImpl"
 mapped-by="address">
 </one-to-one>
 …

 <entity name="Writer"
 class="WriterImpl">
 <attributes>

…
 <one-to-one name="address"
 target-entity="AddressImpl" >

WRITER

ID … … ADDRESS_ID

ADDRESS

ID CITY COUNTRY P_CODE

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.017

EMF JPA Idioms: MapEntry

LibraryImpl StringToBook
MapEntryImpl

eContainer

books

<entity name="Library"
 class="LibraryImpl">
 <attributes>

…
 <one-to-many name="books"
 target-entity="StringToBookMapEntryImpl"
 mapped-by="eContainer">

<entity name="Book"
 class="BookImpl">
 <attributes>

…
 <one-to-one name="eContainer"
 target-entity=
 "StringToBookMapEntryImpl"
 mapped-by="value">
 </one-to-one>
 …

BookImpl

eContainer

value

LIBRARY

ID … … …

BOOK_ENTRY

KEY BOOK_IDLIBRARY_ID

BOOK

ID … … …

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.018

EMF JPA Idioms: Common Fields

 All EObjects have an
eContainerFeatureID.

 Entities must have an id field and
should have a version field for
optimistic locking.

 Best practice: define a common
abstract root class in your model
with common fields.

EObjectImpl

EObject eContainer;
int eContainerFeatureID;

IdentifiableImpl

int id;
Int version;

LibraryImpl BookImpl

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.019

EMF JPA Idioms: Common Fields (cont.)

 Map this abstract class as a
MappedSuperclass

EObjectImpl

EObject eContainer;
int eContainerFeatureID;

IdentifiableImpl

int id;
Int version;

LibraryImpl BookImpl

<mapped-superclass
 class="IdentifiableImpl"
 access="FIELD">
 <attributes>
 <id name="id">
 <column name="ID"/>
 <generated-value/>
 </id>
 <basic name="eContainerFeatureID"/>
 <version name="version"/>
 </attributes>
</mapped-superclass>

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.020

Teneo EclipseLink Runtime

Java Persistence API

EclipseLink Persistence ProviderJPA
mappings

Relational Database

EclipseLink loader/serializer
(EclipseLinkResourceImpl)

EMF Resource API

EclipseLink
add-ons

EMF model

EMF
add-onEListFactory

Teneo
Integration

layer

EMF
add-on

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.021

Development Approaches

 Meet in the middle
 Map existing database schema to a generated EMF model

 Top down model-centric generating:
 Model classes

 Database schema

 JPA mapping metadata

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.022

Meet-in-the-middle mapping

 Teneo supports the meet-in-the-middle approach of mapping
EMF classes to an existing relational schema to enable the
construction of model driven applications on top of existing or
legacy databases.

 Teneo can be combined with the Dali JPA Tools for meet-in-the-
middle development with Dali providing intelligent mapping
assistance and validation against the target relational schema.

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.023

Top-down/Model-driven development

 Start is an ecore/xsd/uml model
 Generates the mapping directly
 Annotate the model:

 In the model itself

 In a separate xml file
 Use specific persistence options

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.024

Generate OR-Mapping

 Decides on join tables versus foreign key
 Chooses side for join-column
 Set cascades
 Handles primitive type mapping
 Handles bi-directional relations
 Takes care of mapping list, set, map
 Ensures unique naming

 Readable/Logical

 Unique, prevent name clashes

 Handle name length constraints

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.025

Generate directly

Ecore Models
Epackage, ecore, xsd, UML

JPA Annotated Model

Teneo Default Annotator ORM Generator

ORM

Persistence
Options

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.026

Adding Annotations: In the Model

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.027

Annotate in XML
<eclass name="Person">

<property name="address">

<many-to-one fetch="EAGER" target-entity="Address" optional="true">

<cascade>MERGE</cascade>

<cascade>PERSIST</cascade>

<cascade>REFRESH</cascade>

</many-to-one>

</property>

</eclass>

<edatatype name="WeightType">

<column name="weight" nullable="true" precision="5" scale="2"/>

</edatatype>

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.028

Generate from annotated models

Ecore Models
Epackage, ecore, xsd, UML

JPA Annotated ModelTeneo Default Annotator

ORM Generator

ORM

Persistence
Options

Import Manual Annotations

Partially JPA
Annotated Model

Teneo: Integrating EMF & EclipseLink | © 2009 Eclipse Foundation; made available under the EPL v1.029

Summary

 Relational persistence is the natural choice for very large EMF
models.

 JPA is the Java standard for relational persistence.
 Therefore, JPA should be used for EMF relational persistence.
 EMF has a number of 'unique' features that conflict with the

expectations and requirements of JPA
 EclipseLink is highly extensible so it is has been extended in

Teneo with special support for EMF.
 Teneo supports both model centric and meet in the middle

JPA/EMF development.
 All the core features are working but we still have work to do…

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	EMF JPA Idioms: eContainer
	EMF JPA Idioms: MapEntry
	EMF JPA Idioms: Common Fields
	EMF JPA Idioms: Common Fields (cont.)
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

