
Ed Merks
itemis

Introduction to the
Eclipse Modeling Framework

Thursday, October 28, 2010 1© Ed Merks | EDL V1.0

• Software is focused on manipulating data
• Data has abstract structure

– It can be described at a high level
– It can be represented in different ways
– It’s always a model of something

• The description of the data is yet more data
– It’s commonly referred to as metadata
– Meta is a bit confusing
– The model of a model is a model

• Whether it’s recognized or not, models drive
software development

Model Driven Software Development

Thursday, October 28, 2010 2© Ed Merks | EDL V1.0

• A simple, pragmatic, Java-based approach that
provides
– The Ecore API for describing models
– The EObject API for manipulating instances
– A resource framework for RESTful persistence
– A generator framework for producing development

artifacts
– A runtime along with utilities for traversing, indexing,

copy, change recording, and so on
– Tools for working with models and their instances

• EMF was used to develop EMF

Eclipse Modeling Framework

Thursday, October 28, 2010 3© Ed Merks | EDL V1.0

• Started at IBM in the late 90’s
– It supported Object Mangement Group (OMG) specifications
– It implemented Meta Object Facility (MOF)
– It used XML Metadata Interface (XMI)
– It’s closely related to Java Metadata Interface (JMI)

• Problems surfaced for adopters
– The MOF model was far too complex
– The generated code and runtime were bloated and performed poorly

• ETools Modeling Framework (EMF) was kicked off in 2000
– Boiled MOF to its essential components resulting in Ecore
– Revamped the runtime and tools to make them lean and mean

• Contributed to Eclipse in September 2002
– Rebrand as the Eclipse Modeling Framework
– Feedback to OMG resulting in Essential MOF/Complete MOF split

A Brief History of EMF

Thursday, October 28, 2010 4© Ed Merks | EDL V1.0

• A simple model for describing models
– Classification of objects
– Attributes of those objects
– Relationships/associations between those objects
– Operations on those objects
– Simple constraints on those objects, and their attributes

and relationships

• Ecore is self describing, i.e., it is its own model
• Models higher up in the meta levels tend to all look

the same
– They begin to conform to our mental model

Ecore: The Model of Models

Thursday, October 28, 2010 5© Ed Merks | EDL V1.0

Relationship of Ecore to Other Models

Thursday, October 28, 2010 6© Ed Merks | EDL V1.0

UML XML Schema

Java

Ecore

A Model is a Model is a Model

Thursday, October 28, 2010 7© Ed Merks | EDL V1.0

<xsd:complexType name="Node">
<xsd:sequence>
<xsd:element

name="children"
type="tree:Node"
minOccurs="0"
maxOccurs="unbounded"
ecore:opposite="parent"/>

</xsd:sequence>
<xsd:attribute
name="label"
type="xsd:string"/>

</xsd:complexType>

public interface Node {
String getLabel();
void setLabel(String value);
List<Node> getChildren();
Node getParent();
void setParent(Node value);

} // Node

UML XML Schema

Java

Ecore

Ecore Overview

Thursday, October 28, 2010 8© Ed Merks | EDL V1.0

Ecore Data Types

Thursday, October 28, 2010 9© Ed Merks | EDL V1.0

Ecore Annotations and EObject

Thursday, October 28, 2010 10© Ed Merks | EDL V1.0

Ecore Generics

Thursday, October 28, 2010 11© Ed Merks | EDL V1.0

The Tree Ecore Model

Thursday, October 28, 2010 12© Ed Merks | EDL V1.0

name tree

nsURI http://www.example.org/tree

eClassifiers Node

name Node

eStructuralFeatures label, children, parent

name label

eType EString

lowerBound 0

upperBound 1

name children

eType Node

lowerBound 0

upperBound -1

containment true

eOpposite parent

name parent

eType Node

lowerBound 0

upperBound 1

containment false

eOpposite children

EPackage

EClass

EAttribute EReference EReference

The Tree Ecore Model Serialized as XMI

Thursday, October 28, 2010 13© Ed Merks | EDL V1.0

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"
name="tree"
nsURI="http://www.example.org/tree"
nsPrefix="tree">

<eClassifiers xsi:type="ecore:EClass" name="Node">
<eStructuralFeatures xsi:type="ecore:EAttribute" name="label"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="children" upperBound="-1"

eType="#//Node" containment="true" eOpposite="#//Node/parent"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="parent"

eType="#//Node" eOpposite="#//Node/children"/>
</eClassifiers>

</ecore:EPackage>

The Tree Ecore Model Serialized as EMOF

Thursday, October 28, 2010 14© Ed Merks | EDL V1.0

<?xml version="1.0" encoding="UTF-8"?>
<emof:Package xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"
xmlns:emof="http://schema.omg.org/spec/MOF/2.0/emof.xml"
xmi:id="tree"
name="tree"
uri="http://www.example.org/tree">

<ownedType xmi:type="emof:Class" xmi:id="tree.Node" name="Node">
<ownedAttribute xmi:id="tree.Node.label" name="label"

isOrdered="true" lower="0">
<type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String"/>
</ownedAttribute>
<ownedAttribute xmi:id="tree.Node.children" name="children"

isOrdered="true" lower="0" upper="*" type="tree.Node"
isComposite="true" opposite="tree.Node.parent"/>

<ownedAttribute xmi:id="tree.Node.parent" name="parent"
isOrdered="true" lower="0" type="tree.Node"
opposite="tree.Node.children"/>

</ownedType>
<xmi:Extension extender="http://www.eclipse.org/emf/2002/Ecore">
<nsPrefix>tree</nsPrefix>

</xmi:Extension>
</emof:Package>

A Tree Instance Model

Thursday, October 28, 2010 15© Ed Merks | EDL V1.0

label Root

children A, B

parent

Node

label A

children X

parent Root

Node

label B

children Y

parent Root

Node

label X

children

parent A

Node

label Y

children

parent B

Node

A Tree Instance Model Serialized as XMI

Thursday, October 28, 2010 16© Ed Merks | EDL V1.0

<tree:Node xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:tree="http://www.example.org/tree"
label="root">

<children label="A">
<children label="X"/>

</children>
<children label="B">

<children label="Y"/>
</children>

</tree:Node>

• The GenModel is a decorator for tailoring the generated code

The EMF Generator Model

Thursday, October 28, 2010 17© Ed Merks | EDL V1.0

EMF Application Architecture

Thursday, October 28, 2010 18© Ed Merks | EDL V1.0

• Demo time!
– Show how to create the Ecore Tree model from scratch

using the Sample Ecore Editor
– Show how to use Ecore Tools for diagrams
– Show how to exploit dynamic models to create Tree

instances
– Demonstrate the interchangeable nature of models

• Generate the Java realization
• Export to XML Schema
• Show how these round trip
• Show how to run the example
• Show how to run the generated editor

EMF in Action

Thursday, October 28, 2010 19© Ed Merks | EDL V1.0

• EMF the defacto standard reference implementation
• EMF is a low cost modeling solution for Java

– SD Times ranks it “top shelf” even relative to pricey commercial
software

• http://www.sdtimes.com/content/article.aspx?ArticleID=32287

• It exploits the models already underlying the application
• It supports iterative development that facilitates both

model-based changes and hand-written changes equally
well

• It boosts productivity by automating routine and
mundane development tasks

• It’s the foundation for data integration by providing a
uniform way to access all models

Summary

Thursday, October 28, 2010 20© Ed Merks | EDL V1.0

• Online help
– http://help.eclipse.org/helios/index.jsp?nav=/17

• Website
– http://www.eclipse.org/emf

• Downloads
• Wiki
• FAQ
• Newsgroup
• Documentation

• Books
– Eclipse Modeling Framework

• First Edition
– http://safari.awprofessional.com/0131425420

• Second Edition
– http://my.safaribooksonline.com/9780321331885

Resources

Thursday, October 28, 2010 21© Ed Merks | EDL V1.0

http://help.eclipse.org/helios/index.jsp?nav=/17
http://www.eclipse.org/emf

