
Eclipse CDT refactoring overview and internals

Michael Rüegg

Institute For Software
University of Applied Sciences Rapperswil

Parallel Tools Platform (PTP) Workshop, Chicago
September, 2012



Outline

1 Refactoring Basics

2 Overview LTK

3 CDT Refactoring Support

4 Refactoring Testing

5 Example: “Remove Class”

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 2 / 33



Outline

1 Refactoring Basics

2 Overview LTK

3 CDT Refactoring Support

4 Refactoring Testing

5 Example: “Remove Class”

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 3 / 33



Refactoring Basics
Properties and Goals of Refactorings

“Refactoring is a change made to the internal structure of a software
component to make it easier to understand and cheaper to modify,
without changing the observable behavior of that software component.”
[Fowler1999]
Goal of refactorings: Increase understandability and modifiability
Focus on structural changes, strictly separated from changes to
functionality
Functionality preservation: guarantee that a refactoring does not
introduce any bugs or invalidates any existing tests or functionality
Manual refactorings are time-consuming and error-prone
⇒ Automatic refactorings in IDE’s can help
Atomic vs. composite refactorings
Flexibility through composing larger refactorings from smaller ones

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 4 / 33



Refactoring Basics
Automated Refactorings

Requirements for automated refactorings:
are behavior-preserving when preconditions are satisfied
are only applicable if the context makes sense
are fast
allow a preview of the changes to occur
are undoable
preserve formatting and comments

Typical steps during automated refactorings:
1 Parsing of the program source to retrieve an Abstract Syntax Tree (AST)
2 Program analysis with the AST to ensure preconditions are satisfied
3 AST is transformed with the refactoring and presented in source format

Challenge: refactorings have to consider the syntax and the semantics of
the underlying programming language!

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 5 / 33



Refactoring Basics
Preserving Behaviour

“Refactorings always yield legal programs that perform operations
equivalent to before the refactoring.” [Opdyke1992]
Opdyke identified a set of syntactic and semantic program properties
which can be easily violated if explicit checks are not done
Examples of these properties are unique superclass (single-inheritance
languages), distinct class names (nested classes are not considered),
type safe assignements, semantically equivalent references and
operations, etc.
Opdyke uses program properties to describe preconditions of low-level
refactorings
Example Create empty class:
∀ class ∈ Program.classes, class.name 6= newClassName.
High-level refactorings: Behavior preservation of those refactorings is
proven in terms of the lower level refactorings used to compose it

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 6 / 33



Refactoring Basics
Refactoring C++ Code

Static type information and naming resolution makes program analysis
and refactoring easier compared to dynamic languages
But: C++ is complex (largely due to its history and evolution from C)
Programs that make use of C++ machine-level language features such as
pointers, sizeof(object) or cast operations are difficult to
subsequently refactor [Opdyke1999]
Even worse: usage of preprocessor
“In retrospect, maybe the worst aspect of Cpp is that it has stifled the
development of programming environments for C. The anarchic and
character-level operation of Cpp makes nontrivial tools for C and C++
larger, slower, less elegant, and less effective than one would have
thought possible.” — Bjarne Stroustrup

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 7 / 33



Refactoring Basics
Example C++ Refactoring Challenges

Extract interface refactoring: What can go wrong when we try to extract
an interface from Die?

#include <cstdlib>
struct Die { // extract an interface

int roll() const {
return rand() % 6 + 1;

}
};
struct AlwaysSixDie : Die {

int roll() const {
return 6;

}
};
// Interface:
struct IDie {
virtual ~IDie() {}
virtual int roll() const =0;

};
Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 8 / 33



Outline

1 Refactoring Basics

2 Overview LTK

3 CDT Refactoring Support

4 Refactoring Testing

5 Example: “Remove Class”

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 9 / 33



Overview LTK
What is LTK?

Refactoring Language Toolkit (LTK) - a language neutral API for
refactorings
Used by Java Development Tools (JDT), C/C++ Development Platform
(CDT) and others
Consists of two plug-ins:

org.eclipse.ltk.core.refactoring
org.eclipse.ltk.ui.refactoring

Most of the functionality of LTK is implemented in abstract classes which
follow the template method pattern

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 10 / 33



Overview LTK
Elements of LTK

Figure : Source [Widmer06]
Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 11 / 33



Overview LTK
Refactoring Lifecycle Overview

Figure : Source [Widmer06]

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 12 / 33



Overview LTK
LTK Refactoring Initializing

Implement org.eclipse.ui.IActionDelegate and use extension
points in plugin.xml

void selectionChanged(IAction, ISelection)
Enable / disable refactoring based on current selection
⇒ only trivial checks to prevent bad user experience!
void run(IAction)
Is executed when the user activates an available refactoring
⇒ use this to initialize a refactoring (e. g., selection, source file)

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 13 / 33



Overview LTK
Checking Preconditions and Transformation

Base class for all LTK refactorings:
org.eclipse.ltk.core.refactoring.Refactoring

Checking Preconditions:
RefactoringStatus
checkInitialConditions(IProgressMonitor)
Based on the users selection we check the refactorings precondition without
additional user input
RefactoringStatus checkFinalConditions(IProgressMonitor)
Perform precondition checks that take the entered user information into
account
checkFinalConditions is always called after calls to
checkInitialCOnditions and before createChange

Transformation: Change createChange()
Creates a change object encapsulating all changes to be performed on
the workspace ⇒ yields
org.eclipse.ltk.core.refactoring.Change

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 14 / 33



Overview LTK
LTK Refactoring Status

org.eclipse.ltk.core.refactoring.RefactoringStatus

Used to communicate the result of the precondition checking to the
refactoring framework
INFO: For informational only
WARNING: The refactoring can be performed, but the user could not be
aware of problems or confusions resulting from the execution
ERROR: The refactoring can be performed, but the refactoring will not be
behavior preserving and / or the partial execution will lead to an
inconsistent state (e. g., compile errors)
FATAL: The refactoring cannot be performed, and execution would lead
to major problems
Source: JavaDoc comments

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 15 / 33



Overview LTK
Refactoring UI

org.eclipse.ltk.ui.refactoring.RefactoringWizard
(encapsulates the wizard itself)
org.eclipse.ltk.ui.refactoring.RefactoringWizardPage
(individual pages the wizard consists of)
Every wizard inherits a standard preview page as well as a final page
with a progress bar

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 16 / 33



Overview LTK
Participants and Scriptable Refactorings

A refactoring participant can participate in the condition checking and
change creation of a refactoring processor
Reason: Refactorings that change several source files may have impact
on some of the other integrated tools
Examples: Renaming classes in PDE, setting breakpoints in a debugger,
consistency of C function declarations and JNI bindings
Two scenarios for scriptable refactorings:

Reapplying refactorings on a previous version of a code base
Composing large and complex refactorings from smaller refactorings

org.eclipse.ltk.core.refactoring.RefactoringDescriptor
and RefactoringContribution

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 17 / 33



Outline

1 Refactoring Basics

2 Overview LTK

3 CDT Refactoring Support

4 Refactoring Testing

5 Example: “Remove Class”

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 18 / 33



CDT Refactoring Support
CDT Refactoring History

Figure : Source [Prigogin2012]

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 19 / 33



CDT Refactoring Support
Translation Unit

A trainslation unit (TU) is a source file with all included headers
A TU is represented by the interface
org.eclipse.cdt.core.model.ITranslationUnit
The root node of the AST has the type
org.eclipse.cdt.core.dom.ast.IASTTranslationUnit
C and C++ AST nodes are separated (e. g., IASTUnaryExpression
and ICPPASTUnaryExpression); C has ~60, C++ ~90 nodes
org.eclipse.cdt.core.dom.ast.IASTNode is the parent interface
of all nodes in the AST

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 20 / 33



CDT Refactoring Support
Obtaining an AST

Refactoring CDT base class:
org.eclipse.cdt.internal.ui.refactoring.CRefactoring

ITranslationUnit has a getAST() method which creates the
IASTTranslationUnit for the TU
Creates a new AST every time it is called ⇒ Better: CRefactoring’s
IASTTranslationUnit getAST(ITranslationUnit,
IProgressMonitor)

This uses the AST cache of CRefactoringContext:
Map<ITranslationUnit, IASTTranslationUnit>

CRefactoringContext inherits from
org.eclipse.ltk.core.refactoring.RefactoringContext
and is a disposable context for C / C++ refactoring operations
The context object has to be disposed after use ⇒ Failure to do so may
cause loss of index lock!
No problem when we execute a refactoring with run() of CDT’s
RefactoringRunner

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 21 / 33



CDT Refactoring Support
Querying the AST

The AST can be traversed in two ways:
1 By calling IASTNode’s getParent() and getChildren() ⇒

cumbersome — we want to decouple the data from the operations that
process the data

2 By using the visitor design pattern; subtype of
org.eclipse.cdt.core.dom.ast.ASTVisitor

ASTVisitor has overloaded visit(IASTXXX) methods for each node type
Each node class has an accept(ASTVisitor) method (defined in
IASTNode) ⇒ calls visit(this)
Example visitor to collect all names:

class ASTNameVisitor extends ASTVisitor {
List<IASTName> names = new ArrayList<IASTName>();
{

this.shouldVisitNames = true;
}
@Override
public int visit(IASTName name) {

names.add(name);
return PROCESS_CONTINUE;

}
}

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 22 / 33



CDT Refactoring Support
Binding resolution

A binding encapsulates all the ways an identifier is used in a program
Binding resolution is the process of searching the AST for usages of an
identifier and generates an object of IBinding
To get an IBinding, we call resolveBinding() on a name node
(IASTName)

Figure : Source [Schorn2009]

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 23 / 33



CDT Refactoring Support
Index retrieval and querying

The index contains information about:
References to macros and global declarations
Include directives and macro definitions
Bindings for each name
File-locations for each declaration, reference, include and macro definition

Use getIndex() of CRefactoring to obtain the
org.eclipse.cdt.core.index.IIndex because it makes sure to
properly acquire and release the read lock for you (note: index will be for
all workspace projects)
IIndex contains methods to lookup program entities:

IIndexName[] findReferences(IBinding binding)
IIndexName[] findDeclarations(IBinding binding)
IIndexName[] findDefinitions(IBinding binding)
// all use:
IIndexName[] findNames(IBinding binding, int flags)

Index usage: local changes vs. global changes

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 24 / 33



CDT Refactoring Support
Building and modifying AST nodes

Use CPPNodeFactory to create new AST nodes (Abstract factory
pattern)
Example to create a namespace definition node:

ICPPASTNamespaceDefinition createNewNs(String ns) {
CPPNodeFactory c = CPPNodeFactory.getDefault();
IASTName n = c.newName(ns.toCharArray())
return c.newNamespaceDefinition(n);

}

Note that the original AST is frozen ⇒ therefore changes can only be
applied on a copy of the AST (or on the sub-tree under change)
Example how to make a decl specifier const:

IASTDeclSpecifier makeConst(IASTDeclSpecifier d) {
IASTDeclSpecifier n = d.copy(CopyStyle.withLocations);
n.setConst(true);
return n;

}

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 25 / 33



CDT Refactoring Support
CDT’s AST Rewrite

Use ASTRewrite to modify code by describing changes to AST nodes
checkFinalConditions of CRefactoringContext calls at its end
collectModifications(IProgressMonitor,
ModificationCollector)
From there, we can obtain an
org.eclipse.cdt.core.dom.rewrite.ASTRewrite
Obtain an ASTRewrite for the currently active TU in the editor:

void collectModifications(IProgressMonitor pm,
ModificationCollector mc) {

IASTTranslationUnit ast = getAst(tu);
ASTRewrite r = mc.rewriterForTranslationUnit(ast);

ASTRewrite provides the following methods:

void remove(IASTNode n, TextEditGroup eg)
ASTRewrite replace(IASTNode n, IASTNode repl,

TextEditGroup eg)
ASTRewrite insertBefore(IASTNode p, IASTNode insPoint,

IASTNode newN,TextEditGroup eg)

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 26 / 33



Outline

1 Refactoring Basics

2 Overview LTK

3 CDT Refactoring Support

4 Refactoring Testing

5 Example: “Remove Class”

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 27 / 33



Refactoring Integration Tests in Eclipse CDT

Refactoring tests in text files specify pre- and postconditions
Example tests for Remove Class refactoring:

1 //!Not referenced local class should be removed
2 //@A.cpp
3 void foo() {
4 class /*$*/A/*$$*/{};
5 }
6 //=
7 void foo() {
8 }
9

10 //!Error when not a class
11 //@.config
12 expectedInitialErrors=1
13 //@A.cpp
14 int /*$*/a/*$$*/;

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 28 / 33



Outline

1 Refactoring Basics

2 Overview LTK

3 CDT Refactoring Support

4 Refactoring Testing

5 Example: “Remove Class”

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 29 / 33



Example: “Remove class”

Low-level refactoring Delete unreferenced class [Opdyke1992]
Arguments: class C
Preconditions: referencesTo(C) = ∅ ∧ subclassesOf (C) = ∅
⇒ The class being deleted from the program is unreferenced; thus, all
program properties are trivially preserved
Example:

struct A {}; // A cannot be removed
};
struct C {}; // C cannot be removed
};
struct B: A { // B can be removed
C c;

};

⇒ DEMO

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 30 / 33



Thanks for your attention!

INSTITUTE FOR
SOFTWAREIFS

IFS Institute for Software, http://ifs.hsr.ch
CUTE — Green Bar for C++, http://cute-test.com
Includator — Static Include Analysis for Eclipse CDT,
http://includator.com

Linticator — Flexe/PC-Lint Integration for Eclipse CDT,
http://linticator.com

SConsolidator — SCons Build Support for Eclipse,
http://sconsolidator.com

Mockator — Seams and Mock Objects for Eclipse CDT,
http://mockator.com

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 31 / 33

http://ifs.hsr.ch
http://cute-test.com
http://includator.com
http://linticator.com
http://sconsolidator.com
http://mockator.com


Bibliography I

Martin Fowler.
Refactoring: Improving the Design of Existing Code.
Addison Wesley, 1999.

Tobias Widmer.
Unleashing the Power of Refactoring.
Eclipse Corner Articles, 2006.

Michael Petito.
Eclipse Refactoring.
EE564, 2007.

Markus Schorn
Using CDT APIs to programmatically introspect C/C++ code.
EclipseCon, 2009

Mike Kucera
Parsing and Analyzing C/C++ code in Eclipse.
McMaster University, March 2012

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 32 / 33



Bibliography II

J. van den Bos
Refactoring (in) Eclipse.
Master Software Engineering, 2008

William F. Opdyke
Refactoring Object-Oriented Frameworks.
Ph.D. Thesis, 1992

William F. Opdyke
Refactoring C++ Programs.
Article, 1999

Alejandra Garrido and Ralph Johnson
Challenges of Refactoring C Programs.
ACM article, 2002

Sergey Prigogin
C++ Refactoring - Now for Real.
EclipseCon, 2012

Michael Rüegg (IFS) Eclipse CDT refactoring overview and internals 2012 33 / 33


	Refactoring Basics
	Overview LTK
	CDT Refactoring Support
	Refactoring Testing
	Example: ``Remove Class''
	Appendix

