
Integrating Model-Driven Development and
Software Product Line Engineering

Iris Groher1, Holger Papajewski2, Markus Voelter3

Siemens AG, CT SE 2, Munich Germany
pure::systems, Magdeburg, Germany

Independent Consultant, Goeppingen, Germany
iris.groher.ext@siemens.com, holger.papajewski@pure-systems.com, voelter@acm.org

Abstract

Software product line engineering aims to reduce
development time, effort, cost, and complexity by tak-
ing advantage of the commonality within a portfolio of
similar products. The effectiveness of a software prod-
uct line approach directly depends on how well feature
variability within the portfolio is implemented and ma-
naged throughout the development lifecycle, from early
analysis through maintenance and evolution. We pre-
sent an approach that facilitates variability implemen-
tation, management, and tracing by integrating model-
driven development and software product line engi-
neering. Appropriate tooling is the basis for a success-
ful application of the new concepts. This paper illus-
trates how pure::variants and openArchitectureWare
are integrated to enable efficient model-driven variant
management.

1 Introduction and Motivation

The effectiveness of a software product line ap-
proach directly depends on how well feature variability
within the portfolio is managed from early analysis to
implementation and through maintenance and evolu-
tion [1][2]. Commonalities, as well as the flexibility to
adapt to different product requirements are captured in
core assets. Those reusable assets are created during
domain engineering. During application engineering,
products are either automatically or manually assem-
bled, using the assets created during the domain engi-
neering process and completed with product-specific
artifacts. Products usually differ by the set of features
they include in order to fulfill customer requirements.
A feature is an increment in functionality provided by
one or more members of a product line [3].

Variability management is the activity concerned
with identifying, designing, implementing, and tracing
flexibility in software product lines (SPLs). Variability
of features often has widespread impact on multiple
artifacts in multiple lifecycle stages, making it a pre-
dominant engineering challenge in software product
line engineering (SPLE).

Our approach integrates model-driven software de-
velopment [4] (MDSD) and product line engineering

by providing means for expressing variability on model
level. We argue that due to the fact that models are
more abstract and hence less detailed than code, vari-
ability on model level is inherently less scattered and
therefore simpler to manage.

While related publications have focused on describ-
ing the approach in general [5], the expression of vari-
ability on model level [6] as well as transformation and
code generation level [7], this paper describes the inte-
gration of the necessary tools. The tool chain is based
on Eclipse and integrates pure::variants [8] as a variant
management tool and openArchitectureWare (oAW)
[9] as a MDSDt toolkit.

The integration of pure::variants and oAW supports
seamless model-driven software product line develop-
ment. Within the oAW tooling, configuration models
can be queried and hence, activities can be performed
based on the presence or absence of features in a vari-
ant model.

The remainder of the paper is organized as follows:
Section 2 provides a short introduction to the inte-
grated tools, namely pure::variants and oAW. Section 3
illustrates their integration. Related work is discussed
in Section 4. Section 5 summarizes the paper and pro-
vides an outlook on future work.

2 Introduction to the Tooling

2.1 pure::variants
Related products frequently share much of the same

software, with only a few differences realizing product-
specific functionality. However, much of the challenge
of developing related products comes from managing
these differences. Variant management addresses this
problem by enabling the development of a group of
related products as a whole, rather than as individual,
independent projects.

pure::variants is a purpose-built variant manage-
ment tool. It manages product lines and assists in pro-
ducing individual product variants. Variant manage-
ment is required in all stages of Product Line develop-
ment. pure::variants provides an infrastructure for vari-
ability modeling and variant definition in all phases of
a system development. This allows existing tools to be

augmented to handle variability and variants more effi-
ciently. With its open interfaces, variant information
can be used consistently in requirements engineering,
during systems design and implementation and also in
testing.

Separates problem and implementation models
The basic idea of pure::variants is to realize product

lines by family models and feature models. Contrary to
previous feature model based technologies,
pure::variants captures the problem with feature mod-
els
and the solutions with family models separately and
independently. A family model consists of so-called
components. Components represent at least one attrib-
ute of the software solution and contain the logical
parts like classes, objects, functions, variables and
documentation. A feature model specifies the interde-
pendencies of the features of a product line. They allow
a uniform representation of all variabilities and com-
monalities of the products of the product line.
pure::variants also supports the use of multiple feature
models that are hierarchically linked.

Transforms requirements into solutions
During the problem analysis and solution design

stages of software development, pure::variants records
and administers all models and information, thus as-
sists in the creation of software families implementing
product lines. pure::variants can even be used to auto-
matically generate custom-made solutions: A user (de-
veloper or customer) selects features required for the
desired product from the feature models. pure::variants
checks the validity of this selection and if necessary
automatically resolves dependency conflicts. A valid
selection triggers an evaluation of the family models
that contain component definitions consisting of logical
and physical parts. The evaluation process results in an
abstract description of the selected solution in terms of
components. This description controls the transforma-
tion process that in creates the custom-made software
solutions.

2.2 openArchitectureWare
oAW is a framework that integrates a number of

tool components for all aspects in model-driven soft-
ware development (MDSD). oAW is basically a "tool
for building MDSD tools". It supports arbitrary import
model formats, meta models, and output code formats.
At the core there is a workflow engine allowing the
definition of transformation workflows as well as a
number of prebuilt workflow components that can be
used for reading and instantiating models, checking
them for constraint violations, transforming them into
other models and then finally, for generating code.

Workflow files are XML files that describe the
steps that need to be executed in a generator run. Each
of these steps is specified with what is called a work-
flow component. A typical oAW workflow consists of
loading one or more models, checking constraints on
them, transforming them into other models and then
generating code from them.

With a suitable instantiator, oAW can read any
model. There is built-in support for EMF [10], various
UML tools, textual models, XML, and Visio. Code
generation in oAW is done using a language called
Xpand. It is an object-oriented template language that
supports template polymorphism and template aspects
[11]. For checking model constraints, oAW offers a
declarative constraints checking language called Check
that is very much like OCL.

Model-to-Model transformations can be imple-
mented using a language called Xtend. It is a textual
and (more or less) functional language for querying
and navigating existing models as well as building new
models. The expression sub-language is a simplified
version of OCL.

The expression of variability in structural models
can be done using tools called XWeave and XVar [6].
They support the implementation of positive as well as
negative variability on model and meta model level.

3 Integrating pure::variants and oAW

The integration of pure::variants and oAW supports
seamless model-driven software product line develop-
ment. Within the oAW tooling, global configuration
models can be queried and hence, MDSD activities can
be performed based on the selection of features. Work-
flow components, model-transformations, and code
generation templates can be connected to features.
Their execution thus depends on the presence or ab-
sence of the feature in the configuration model.

Figure 1: Integrating pure::variants and oAW

The data transfer between pure::variants and oAW
is done using Ecore [10]. An automatic variant model-
export into an Ecore model is provided by
pure::variants. The oAW runtime reads this model and
interprets the variant information. In order for this in-
tegration to work, a meta model for variant models has

been defined. Figure 1 illustrates this integration and
the respective models.

Figure 2 shows how either workflow steps or model
transformations and code generation templates can be
connected to features defined in a global configuration
model. Therefore, their execution can depend on the
selection of features in the configuration models.

Figure 2: Linking model transformation and
code generation to configuration models

Connecting workflow steps with the configuration
Due to the integration of pure::variants and oAW it

is possible to express dependencies between workflow
steps and features. Workflow components are then
only executed if the respective feature is selected in the
configuration model. This is expressed by a surround-
ing <feature…> tag.

For example, we only want to have a logging inter-
ceptor installed in a system if the feature logging is
selected in the global configuration model. The follow-
ing code snippet shows how this dependency is ex-
pressed in a workflow description:
<feature exists="logging">
 <component adviceTarget="xtendComponent.ps2cbd"
 class="oaw.xtend.XtendAdvice">
 <extensionAdvices value="logging"/>
 </component>
</feature>

Querying the feature model directly
We can also access the configuration model directly

from within transformations or code generation tem-
plates. For example, the following piece of transforma-
tion code optionally adds burglar detection facilities to
a building. The same function can be called from inside
a template (typically, as part of an IF statement). The

optional transformation steps are only executed in case
the respective features are part of the configuration.
create System transformPs2Cbd(Building building):
 …
 hasFeature("burglarAlarm") ? (handleBurglarAlarm() -> this) : this;

handleBurglarAlarm(System this):
 let conf = createBurglarConfig(): (
 configurations.add(conf) ->
 …
 conf.connectors.add(connectSimToPanel(createSimulatorInstance(),
 createControlPanelInstance())) ->
 hasFeature("siren") ? conf.addAlarmDevice("AlarmSiren") : null ->
 hasFeature("bell") ? conf.addAlarmDevice("AlarmBell") : null ->
 hasFeature("light") ? conf.addAlarmDevice("AlarmLight") : null
);

Feature Attributes
It is also possible to address properties or attributes

of features. For example, you might want to be able to
configure the volume of the siren in the configuration
model. The transformation would read this value from
the configuration model and parameterize the siren
component instance accordingly. Here’s the code:
handleBurglarAlarm(System this):
 …
 isFeatureSelected("siren") ? (
 let siren = conf.addAlarmDevice("AlarmSiren"):
 siren.configParamValues.add(siren.createParamForLevel())
) : null ->
 …
);

private create ConfigParameterValue
 createParamForLevel(ComponentInstance instance):
 setName("level") ->
 setValue((String)getFeatureAttributeValue("siren", "level"));

4 Summary and Future Work

In this paper we have shown how the integration of
pure::variants and oAW combines the power of model-
driven software development with variability manage-
ment. This enables more flexible MSDS solutions
where users are able to configure generated systems
easily. pure::variants is responsible for providing valid
configuration information to the MDSD tooling. oAW
performs well defined transformation and generation
steps based on the presence or absence of available
features. The user can customize the transformation
and generation steps simply by selecting features from
the provided variability model. It is possible to query
the variant model from within workflow files, model
transformations, and code generation templates.

Due to the open and extensible nature of Eclipse, a
seamless integration of pure::variants and oAW is pos-
sible. The tooling serves as the basis for a successful
application of the aspect-oriented model-driven soft-

ware product line engineering methodology that we
envision [5].

In the future we will work on a better visualization
of the dependencies between MDSD artifacts and fea-
tures. For example, the workflow components, trans-
formation steps, and templates that depend on a feature
can be highlighted in the same color. This facilitates
variant tracing and maintainability of features.

5 Acknowledgments

This work is supported by AMPLE Grant IST-
033710.

6 References

[1] K. Pohl, G. Böckle, and F. v. d. Linden, Software Product
Line Engineering Foundations, Principles, and Techniques.
Berlin: Springer, 2005.
[2] P. Clements, and L. M. Northrop, Software Product
Lines: Practices and Patterns. Addison-Wesley, 2001.
[3] P. Zave, “FAQ Sheet on Feature Interaction”:
http://www.research.att.com/~pamela/faq.html
[4] T. Stahl, and M. Voelter, Model-Driven Software Devel-
opment: Wiley & Sons, 2006.
[5] M. Voelter, and I. Groher, “Product Line Implementation
using Aspect-Oriented and Model-Driven Software Devel-
opment”, In Proceedings of the 11th International Software
Product Line Conference (SPLC), Kyoto, Japan, 2007.
[6] I. Groher, and M. Voelter, “Expressing Feature-Based
Variability in Structural Models”, In Proceedings of the
Workshop on Managing Variability for Software Product
Lines, Kyoto, Japan, 2007.
[7] M. Voelter, and I. Groher, “Handling Variability in
Model Transformations and Generators”, Submitted for pub-
lication, 2007.
[8] pure::variants Variant Management Tool website,
http://www.pure-systems.com/3.0.html
[9] openArchitectureWare (oAW) website,
http://www.eclipse.org/gmt/oaw/
[10] Eclipse Modeling Framework (EMF) website,
http://eclipse.org/emf
[11] AOSD website, http://www.aosd.net

