
Ubiquitous MDSD – Bringing Together Modeling and Coding 
Model-Driven Software Development (MDSD) is a powerful paradigm 
that has finally reached mainstream software development in the 
course of this decade. But although we have a large toolset at hand for 
both modeling and coding – most notably provided by the Eclipse 
EMP and JDT projects – the integration of the two worlds is often 
rather bumpy. This paper shows an approach that bundles graphical 
model editors based on GMF and code generators based on 
openArchitectureWare (oAW) into a regular Eclipse IDE and strives 
to achieve a seamless transition from modeling to coding (and back) in 
everyday development. 

Motivation 
Over the years, integrated development environments (IDEs) have boosted developer 
productivity in many ways. We have grown accustomed to features like content assist and 
automatic code completion, fast and easy navigation through code, automatic and incremental 
code compilation, and on-the-spot error indication, to name but a few. All this has become 
possible because we have been doing the same thing for a couple of decades now: writing 
source code. 
Enter model-driven software development. We identify recurring patterns in our software, 
find formal abstractions to specify instances of these patterns (called metamodels, then), and 
tell our developers to create models instead of source code, because we can generate source 
and other artifacts out of these models very easily. 
And while it is hard to deny the increases in productivity and quality gained by generating 
code out of formal models, many developers find working with models very cumbersome and 
annoying. This is very often caused by the lack of productivity features like the ones 
mentioned above in MDSD tooling. Another common burden is that now developers must 
live in two parallel worlds: the model and the code, interconnected solely by the task of 
running the code generator. 
It is thus our primary goal to make the model driven software development process as 
productive as the source-code-only software development process already is, and to provide a 
seamless integration of modeling and coding, up to the point where the developer no longer 
feels any difference between the two of them, thus making MDSD truly ubiquitous. 
This paper first puts the solution into perspective by presenting the framework into which 
everything is embedded. We then pick out some specific areas where we have taken steps 
towards reaching the goal of ubiquitous MDSD, and conclude with an outlook of topics yet on 
our roadmap. 

The Framework 
Our main target is to simplify the development of business applications, so we focused on a 
rather abstract, technical domain of (persistent) business objects and their interrelations. A 
standard, GMF-based graphical editor was developed in a rather short time-frame, while at the 
same time we implemented a flexible, aspect-oriented framework for managing the business 
objects at runtime. We had a similar flexibility in mind with regard to code generation, and 
we chose the openArchitectureWare (oAW) generator framework as a technical foundation. 
With the goal of ubiquitous MDSD in mind, it is imperative to hide from the developer as 
many of the tooling details as possible. Just as a Java developer typically is not interested in 
the fact that Eclipse uses its own Java compiler, it is of no importance to know whether the 
model editor is GMF-based or that the oAW generator interprets a set of templates in order to 
create the desired code. So while we are using all of these technologies, their existence is 
largely hidden from the developer. This is the arena where we can begin working on the goal 
of seamless integration. 



Tool Integration 
First and foremost, the tool integration itself is a primary concern. It is most important that all 
tools required by the developer are integrated into one platform. Switching back and forth 
between a modeling tool and a separate IDE, possibly through the interruptive step of a 
manual generator invocation in a console, is most unproductive and by no means satisfying 
for the developer. The Eclipse platform obviously presents the optimal integration hub to 
achieve this goal. 
In order to hide generator details from the developer, we need to encapsulate raw generator 
templates into modules or cartridges and bundle them as Eclipse plug-ins. These bundled 
generator cartridges make themselves known by registering an extension at a central generator 
component. The developer can choose which cartridges to use, and of course define the model 
they are supposed to operate on. The generator can then be run in a pre-defined workflow 
using this configuration information. 
The result is that in his IDE the developer finds ready-to-use bundles, which are capable of 
generating code (or any other textual artifact), and which he can select to operate on his 
model. Unless he wants to contribute his own generator cartridge, all details about 
openArchitectureWare, metamodel configuration, template syntax, and workflow descriptions 
are hidden from the developer. 

Error Detection and Indication 
With MDSD, it has often been a problem for developers that errors in the model are only 
detected when running the code generator. Even then, cryptic error messages, exceptions, or 
simply mal-generated code were often the only result. 
It is therefore important to detect and indicate errors as soon as possible, i.e. typically when 
creating and saving the model in the graphical editor. GMF provides an excellent integration 
with the EMF validation framework. (OCL-)Constraints can be formulated in the metamodel 
and are checked more or less automatically. Error markers are shown both within the diagram 
and in Eclipse’s problem view – the very same place where Java compiler errors will show 
up. This may seem trivial, but in fact it carries the very important notion that modeling errors 
are at the same level as coding errors. 
As a result of erroneous model, no code must be generated. It is important to always validate 
the model prior to generation – in case the model has been modified outside of the graphical 
editor. Error markers must be created in this case as well. 

Content Assist and Automatic Completion 
Hardly any developer will ever make do without content assist and automatic code completion 
anymore. Especially when modeling class-like structures, like we do in our business object 
domain, it is important to provide a similar feature in the graphical editor as well. The results 
are stunning. As expected, developers embrace this well-known feature and have no problems 
using it. 

Automatic Code Generation 
A major annoyance in MDSD is the explicit manual task of running the code generator. This 
is a tangible separation between modeling and coding. Moreover, it is not a part of the 
automatic (and incremental) compiler invocation that we’re used to in the Java world. 
We solved this problem by hooking the generator as an Eclipse builder into the regular 
automatic build process. The result is that whenever the model file (as specified in the 
generator configuration) is saved, the generator runs in a background task and creates the 
artifacts resulting from the model, validating the model on-the-fly. Source code that results 
from generation will be compiled immediately afterwards by the Java builder and can be used 
instantaneously. This provides an immediate round-trip from model to code. 



Fast Model Navigation 
While changes in the model are reflected in almost no time in the generated source code, we 
still do have a separation of model and code. As a general rule, generated source code must 
not be modified manually, since changes to the code are not reflected in the model. It is 
therefore imperative for the developer to make certain changes in the model. Often, the need 
for such changes arises while developing implementation code in Java classes. While 
navigation within Java code is nowadays made very easy by IDEs, finding model elements 
that need to be changed can be challenging, especially in large models. 
A first, very obvious solution is to provide a model navigator view that allows navigating the 
model tree hierarchically, very similar to the package navigator view for Java. But once a 
developer knows the code he is working with, he hardly uses the navigator view anymore, but 
instead turns to the Open Type… dialog (defaults to the CTRL-SHIFT-T shortcut) which 
allows finding a known type by name, with wildcard and camel-case support. 
We implemented a similar function with an Open Model Element… dialog (mapped to a 
CTRL-SHFT-Z shortcut). Instead of Java types, it displays the names of model elements, 
along with the diagrams in which they are visualized. If an element is shown in multiple 
diagrams, separate entries are shown in the dialog, similar to classes with the same name in 
separate packages. The model elements are read and cached in background jobs, so the lookup 
is kept fast. 

Conclusion and Outlook 
In this paper, we have shown that it is possible to integrate MDSD tools in order to provide a 
productive environment for the MDSD developer. The boundaries between modeling and 
coding are blurred by automatic code generation and fast navigation from code to model. 
Many problems that made developers reluctant to adopt MDSD have been solved. 
Still, many things remain to be done. The generator itself, for example, currently performs a 
complete generation process for every model change. Although running in the background, 
this can be a performance problem for large models. Incremental generation, similar to 
incremental compilation is a topic of current research. 
In terms of model navigation, an even more direct way from code to model, similar to the 
“F3” shortcut or “CTRL-Click” hyperlinking would be desirable. Implementing this feature, 
though, would require full traceability from model element via generator template to the 
resulting artifact (and back). This traceability is a research area as well. 
Finally, one major productivity booster of recent years is automated refactoring. While it is, 
for instance, very easy to rename a model element and keep the model itself consistent, Java 
code that references artifacts generated out of that model element will still refer to the old 
element. Here, the separation of model and code is still clearly visible to the developer. 
Special template-aware refactoring of model elements is necessary to solve this problem. 
Still, with all the steps yet to be taken, ubiquitous MDSD is within reach using the 
technologies we have at hand today. 


