
Product Line Unified Modeler (PLUM)

Aitor Aldazabal
European Software Institute,

 Zamudio, Bizkaia, Spain
Aitor.Aldazabal@esi.es

Sergey Erofeev
European Software Institute,

Zamudio, Bizkaia, Spain
Sergey.Erofeev@esi.es

1. Introduction

The Product Line Unified Modeler (PLUM) is a

tool suite under development in the European Software
Institute which is meant to aid creation, management
and exploitation of Software Product Lines [1] [2] by
making use of the Eclipse framework’s wide array of
features and projects.

A software product line (SPL) can be defined as a
set of software intensive systems sharing a common,
managed set of features that satisfies specific needs of
a particular market segment or mission and that are
developed from a common set of core assets in a
prescribed way [3].

PLUM suite makes use of the concepts obtained as
a result from past international research projects like
FAMILIES [4], CAFE [5] or ESAPS [6] as well as
brand new concepts from ongoing projects like MoSiS
and FLEXI to represent Product Lines into models, and
the variability of the products inside them.
Implementations of these concepts have already been
materialized in a wide array of independent tools such
as the two versions of VManage from ESI [7], Gears
from BigLever [8] and pure::variants from Pure
Systems [9].

The main difference between previous
implementations and PLUM resides in its objective,
which is to provide several approaches (direct
product variability, model driven variability and so on)
to software product line management, unified in a tool,
providing several layers of compatibility between each
approach. This makes compatibility and
interoperability between modeling tools a key feature
of our suite.

PLUM is under development using Eclipse and
designed to be compatible and embeddable within the
framework [10], making use of known and widely used
tools and plug-ins both for its development and as
building blocks to implement the features required by a
SPL tool.

Special emphasis it’s being made in the EMF [11]
and GMF [12] Eclipse projects and also in the OAW

[13] project. These projects compose the core building
blocks and tools for the first approach implemented at
PLUM, the Direct Product Variability (DPV).

The DPV approach focuses on identifying
variability in text based representations of each
product, source code for example, and structuring the
variable features in model based representations. These
models represent the variability for a family. This
approach will provide a series of editors to enable
resolving the variability. Once variability is resolved, a
series of easily configurable transformations can then
be applied to these models in order to obtain different
products. The Direct Product Variability approach
provides the concepts both for building up a product
family and for its exploitation.

EMF, GEF and GMF will provide the basic
building block for the models, their editors, and the
basic transformations, while OAW’s engine will
provide the tool with a powerful, mature and highly
extensible transformation and workflow engine which
will be used to create the actual products.

For the integration and interoperability between
modeling tools however, the main Eclipse project we
are going to use is the Model Driven Development
Integration [14] project which features a series of
resources like the Model Bus which will allow us for a
standardized approach to interoperability among other
benefits.

2. Introduction to Variability.

There are several definitions [15] and several

approaches to Variability Management, most of them
applied or envisioned to be applied in Software
Product Line engineering processes. Several tool
vendors like BigLever [8] or Pure Systems [9] and
research institutes like ESI [7] have created their own
approach to variability management. ESI’s approach
was derived from results obtained in international
research projects like FAMILIES [4], CAFÉ [5] or
ESAPS [6]. Lately a new project, MoSiS has been
launched to create a unified language for variability

modelling targeted at Software Intensive Systems.
Additionally another international project called
FLEXI is focused in applying of variability in large
organizations.

This paper will rely on the latest version of one of
ESI’s approaches for variability called Direct Product
Variability, since it is the one being currently
implemented in PLUM.

The Direct Product Variability is designed to
represent the variable features of a product family in
what is called a Decision Model. The Decision Model
is a structure which conceptually resembles the
questions of a test. It defines the type of decision
(multiple choice, single choice, range value, etc.), the
description of the decision, the type of data expected as
an answer and depending on the type of the decision it
also defines the range of values or set of choices from
which to pick the answer. It also provides features
which allow grouping a series of decisions in a
hierarchical structure and collections which can be
used to create new instances of decisions at resolution
time.

Perhaps the feature which most differentiates a
decision model from a test is the concept of
dependency. Dependencies allow defining a series of
actions to take place, like deriving values of other
decisions, when certain conditions regarding the
elements of the decision model are met. These
dependencies are executed at resolution time.

The figure 1 represents the core concepts of a
Decision Model.

Figure 1. Core concepts of the Decision Meta-

Model.

Once the Decision Model is completed, the next
step in the Direct Product Variability approach is to
generate the Application Model (AM) from it. If
previously we have compared the decisions to the
questions of a test and the decision model to the layout
of the test, the Application Model can be depicted as an
instance of the test with the actual answers. An
Application Model represents an actual product from
the product family by specifying the variable features it
has. The process of setting the answers and values in
the Application Model is called Variability Resolution.

Finally the resolved Application Model is used as
an input to the Flexible Component Architecture
(FCA). The Flexible Component Architecture is
composed of series of Flexible Components which are
scripts like pieces of executable code which create the
final product based on the values of the decisions in the
resolved Application Model. These scripts are flexible
enough to allow the creation of almost any kind of
product. Decisions represent the variable features of a
product in the family.

The figure 2 is a graphical representation of the
workflow in the Direct Product Variability approach.

Figure 2. DPV Activity Diagram.

Previous versions of this approach have been

supported by ESI’s VManage toolkit.

3. Standardized Interoperability

As it has been already stated interoperability

between modeling tools is a key feature for our suite.
For example the OAW’s transformation engine will be
used to transform the models containing the decisions
into actual products. In order to achieve this we need to
interoperate with the OAW tool.

This connection between OAW and PLUM could
be implemented by directly using the OAW’s API in a
custom fashion. However this would impose a direct
dependency with the OAW tool and this is not desired
since our tool requires functionality which is not
proprietary of OAW but also can be implemented by
other model transformation tools which use EMF
models as their inputs. Acceleo [16] is one of these
tools which could be used in substitution of OAW.

In order to implement the much needed
interoperability it was decided to use the Model Bus.
Model Bus is a product created inside the ModelWare
[17] European research project, where ESI also
participated, and which has been migrated into the
Eclipse community inside the MDDi [14] project.

The aim of Model Bus is to create a standardized
way for modeling tools to communicate using SOA
principles. Therefore an application can publish a
series of services to a registry and another application
would be able to easily discover and consume them.
The Model Bus helps this process of service creation
and deployment by simplifying the tasks needed to
define and deploy web services and by standardizing
the data types and data mappings the services will use.

However adapters must be created for applications
using the Model Bus both to enable them to consume
and provide services. In the case at hand, OAW does
not provide up to this date any officially supported
adapter for the Model Bus toolkit. Hence the first
problem we had to solve is to create an adapter for the
OAW tool in order to enable it to inter operate with the
Model Bus.

Once the OAW tool is made compatible and its
services are accessible via the bus, the need to create
another middleware tool for PLUM toolkit itself arisen.

Upon integration of the both adapters for the
PLUM toolkit to consume the services and for OAW to
provide them, the Software Product Line tool
implementing the Direct Product Variability Approach
will be completed. It will feature both graphical and
tree model editors powered by EMF and GMF as well
as OCL [17] model constraint enforcement and query
capabilities which were also used to implement the
Dependency resolution engine. These editors, which
are fully integrated into the Eclipse environment,
covered both the Decision and Application Modeling

phases of the DPV approach. The Flexible components
were implemented as model transformations using
OAW and integrated with the editors using the process
which has been recently explained thereby reducing the
costs of creating a transformation engine of our own.

4. Conclusions

During development of the PLUM toolkit it has
been made clear that there are tools inside the Eclipse
ecosystem which perform different modeling
operations. These tools are very efficiently on their
own but often middleware adapters have to be
developed to combine their strengths in an integrated
tool suite.

By combining different series of existing
technologies and tools for modeling (EMF, GMF),
analysis (OCL, BIRT), integration (Model Bus, SVN)
we have been able to produce a SPL supporting tool
which manages the whole PL from the beginning to the
end with much lower costs and higher quality than if it
has been entirely developed from scratch.

Additionally by using Model Bus we have
obtained benefits inherent to standardization and SOA
development techniques, such as the ability to inter
operate with remote applications and the base for a
client-server structure.

5. References

[1] P. Clements and L. Northrop. Software Product Lines:

Practices and Patterns. Addison-Wesley, 2001.

[2] J. Greenfield and K. Short. Software Factories:
Assembling Applications with Patterns, Frameworks,
Models and Tools. John Wiley and Sons. 2004

[3] Product Line Definition by Clements and Northrop
2002.

[4] FAMILIES ITEA Research Project
http://www.esi.es/Families/

[5] CAFÉ ITEA Research Project http://www.hitech-
projects.com/euprojects/cafe/index.htm

[6] ESAPS Research Project http://www.esi.es/esaps/

[7] Gears Tool
http://www.biglever.com/solution/product.html

[8] pure::variants Tool http://www.pure-
systems.com/Variant_Management.49.0.html

[9] E. Gamma and K. Beck. Contributing to Eclipse :
principles, patterns, and plug-ins. Addison-Wesley.
2004

[10] EMF Project http://www.eclipse.org/modeling/emf/

[11] GEF Project http://www.eclipse.org/gef/

[12] GMF Project http://www.eclipse.org/gmf/

[13] OAW Project http://www.openarchitectureware.org/

[14] MDDi Project http://www.eclipse.org/mddi/

[15] Software Product Line Engineering. Foundations,
Principles, and Techniques. Klaus Pohl, Günter Böckle,
Frank van der Linden. http://www.eclipse.org/mddi/

[16] Acceleo Generator
http://www.acceleo.org/pages/home/en

[17] Model Ware research project http://www.modelware-
ist.org/

[18] Flexi ITEA2 Research Project http://flexi-itea2.org/

