
Validating Ecore models using oAW Workflow and OCL

Peter Friese
Gentleware AG

Ludwigstraße 12
20357 Hamburg, Germany

peter.friese@gentleware.com

Bernd Kolb
Kolbware

Franz-Marc Straße 35
89520 Heidenheim, Germany

b.kolb@kolbware.de

ABSTRACT
This paper describes how to integrate the Eclipse OCL frame-
work with the openArchitectureWare workflow in order to
use OCL for model validation.

Keywords
Eclipse Summit Europe 2007, Eclipse, OCL, model, valida-
tion, workflow, openArchitectureWare

1. INTRODUCTION
During the last few years, more and more projects and com-
panies have adopted modeling technologies to drive their
software development process. Having started mostly as a
way to describe and document software, models are increas-
ingly being used to generate software.

Having a look at the Eclipse Modeling Project (http://www.
eclipse.org/modeling/), it can be seen that there is a large
number of modeling related projects at Eclipse alone.

However, many of these projects are islands and are not
integrated with each other.

In this paper, we propose to use the openArchitectureWare
workflow engine to act as an integration layer between var-
ious projects. As a sample, we show how to integrate the
Eclipse OCL component (http://www.eclipse.org/modeling/
mdt/?project=ocl#ocl) with openArchitectureWare.

2. OPENARCHITECTUREWARE (OAW)
openArchitectureWare (oAW) is a modular MDSD frame-
work that enables software engineers to create model driven
code generators based on an array of building blocks.

Although oAW is written in Java, it supports any target
platform, thus enabling software engineers to build code gen-
erators for J2EE/JEE, .NET, automotive platforms, micro-
controllers and so forth.

oAW can operate on arbitrary metamodels, such as UML,
UML2, EMF/Ecore, XML or even JavaBeans-based meta-
models.

Models based on these metamodels can be validated using
the OCL-inspired Check language.

oAW allows users to transform models using both model to
model (M2M) and model to code (M2T) transformations.
Model to model transformations are described using the
Xtend language, while model to text transformations are
decribed in templates written in Xpand.

All languages are fully polymorphic and adapt to the respec-
tive metamodel.

To facilitate work with the various languages, configuration
files and workflows, oAW provides a tight integration with
Eclipse. Wizards, cheat sheets, online help and Welcome
page contributions help users getting started with openAr-
chitectureWare quickly. Editors for the various languages
feature syntax coloring, code completion, code outlining and
hyperlink navigation.

An oAW-based code generator consists of a user-supplied
metamodel, a collection of metamodel-tied templates and
possibly a collection of model to model transformations.
Last, but not least, operation of the code generator is con-
trolled using a workflow that is described in XML and will
be executed by the oAW workflow engine.

3. OAW WORKFLOW
The oAW workflow engine is a declaratively configured gen-
erator engine that is configured using XML. Workflows are
made up of workflow components which are POJOs that
conform to a oAW-supplied base class.

oAW sports a WTP-based XML editor which provides in-
trospection-driven code completion, thus making it easy to
support custom-written workflow components.

Workflow components delivered with openArchitectureWare
include serveral model readers (for various metamodels such
as UML and Ecore), a model validator based on the oAW-
related Check language and a template engine for the Xpand
language.

Custom workflow components can be developed based on a



set of base classes such as WorkflowComponent, Component,
SubComponent and CompositeComponent .

<workflow>

<component class="my.first.WorkflowComponent">

<aProp value="test"/>

</component>

<component class="my.second.WorkflowComponent">

<anotherProp value="test2"/>

</component>

<component class="my.third.WorkflowComponent">

<prop value="test"/>

</component>

</workflow>

Workflows can be nested, thus enabling openArchitetcure-
Ware users to create re-useable generator components (also
known as “cartridges”):

<workflow>

<cartridge

file="compiler.oaw"

srcDir="_test.tmp"

targetDir="src-gen-test"

packagePrefix="testpkg.pkg"

/>

</workflow>

4. THE OBJECT CONSTRAINT LANGUA-
GE (OCL)

The Object Constraint Language (OCL) is a formal lan-
guage that enables modelers to specify expressions and con-
straints on object-oriented models. Expressions can be used
to specify values or to select them from a model instance.
Constraints are restrictions of (part of) an object-oriented
model.

OCL is part of the UML specification of the OMG and has
been specified by the OMG in [2].

Although the OMG envisions OCL as the constraint lan-
guage for UML-based models, it can be used in other con-
texts as well.

In this paper we will show how to use OCL to ensure models
meet certain constraints.

As code generators rely on formal and precise models, it is
essential to ensure models do not contain ambiguous infor-
mation.

Using metamodels is a corner stone in ensuring formal mod-
els. However, some constraints cannot be expressed in the
metamodel due to limitations of the metametamodel being
used.

There are two countermeasures we can take to avoid un-
precise models: either the modeling tool must ensure the
user cannot create illegal models (e.g. by disallowing to
draw illegal dependencies) or the generator must validate
the model before processing it.

Since most modeling tools miserably fail at ensuring the user
creates valid models, it is essential the code generator per-
forms model validation before further processing. This is
where our OCL integration comes into play

5. INTEGRATING OAW AND OCL
To integrate the OCL component and openArchitecture-
Ware, we need to write a workflow component. This work-
flow component will be invoked during the openArchitec-
tureWare workflow run. The OCL workflow component will
take an OCL constraint expression as a parameter. When
executed, it will evaluate this expression against the model.

Workflow components support properties. In order to sup-
port simple properties, a workflow component has to supply
a set<propertyname> method. If you want to set a list of
values you need to supply a add<propertyname> method.

Workflow components have to communicate among each other.
For example, if an XMIReader component reads a model
that a constraint checker component wants to check, the
model must be passed from the reader to the checker. The
way this happens is as follows. In the invoke operation, a
workflow component has access to the so-called workflow
context. This context contains any number of named slots.
In order to communicate, two components agree on a slot
name, the first component puts an object into that slot and
the second component takes it from there. Basically, slots
are named variables global to the workflow. The slot names
are configured from the workflow file. Here is an example:

<?xml version="1.0" encoding="windows-1252"?>

<workflow>

<property file="workflow.properties"/>

<component id="xmiParser"

class="org.openarchitectureware.emf.XmiReader">

<outputSlot value="model"/>

</component>

<component

id="checker"

class="datamodel.generator.Checker">

<modelSlot value="model"/>

</component>

</workflow>

If some error occurrs during processing, a workflow compo-
nent can use the issues API to communicate this problem to
the surrounding workflow. This is used in our implemention
to return the result of the evaluation to the workflow:

boolean result =

eval(issues, context, ocl, helper, exp);

if (!result) {

issues.addError(exp + " evaluated to false");

}

Here is the source code for the OCL workflow component:

public class OCLWorkflowComponent



extends WorkflowComponentWithModelSlot {

private IOCLFactory<Object> oclFactory;

private boolean isEMF = true;

private String exp;

public void invoke(WorkflowContext ctx,

ProgressMonitor monitor, Issues issues) {

Object object = ctx.get(getModelSlot());

EObject context;

if (object instanceof EList) {

EList l = (EList) object;

context = (EObject) l.get(0);

} else {

context = (EObject) object;

}

if (isEMF) {

oclFactory = new EcoreOCLFactory(context);

} else {

oclFactory = new UMLOCLFactory(context);

}

OCL<?, Object, ?, ?, ?, ?, ?, ?, ?,

Constraint, ?, ?> ocl = oclFactory.createOCL();

OCLHelper<Object, ?, ?, Constraint> helper =

ocl.createOCLHelper();

boolean result =

eval(issues, context, ocl, helper, exp);

if (!result) {

issues.addError(exp + " evaluated to false");

}

}

private boolean eval(Issues issues, EObject context,

OCL ocl, OCLHelper helper, String exp) {

// set our helper’s context classifier to

// parse against it

helper.setContext(

oclFactory.getContextClassifier(context));

try {

Constraint parsed =

(Constraint) helper.createInvariant(exp);

return ocl.check(context, parsed);

} catch (Exception e) {

issues.addError("Exception while evaluating " +

exp + ": " + e.getMessage(), e);

}

return false;

}

public void setIsEMF(boolean isEMF) {

this.isEMF = isEMF;

}

public void setOCLExpression(String exp) {

this.exp = exp;

}

}

Here is a sample workflow file that loads a model and eval-
uates two different OCL expressions against that model:

<workflow>

<component file=’org/example/dsl/parser/Parser.oaw’>

<modelFile value=’model/xxx.dsl’ />

<outputSlot value=’test’ />

</component>

<component

class="...adapter.ocl.OCLWorkflowComponent">

<OCLExpression value="contents -> size() = 1" />

<modelSlot value="test" />

<isEMF value="true" />

</component>

<!-- will fail -->

<component

class="...adapter.ocl.OCLWorkflowComponent">

<OCLExpression value="name = ’lalalala’" />

<modelSlot value="test" />

<isEMF value="true" />

</component>

</workflow>

6. CONCLUSIONS
In this paper, we have motivated the reasons for validat-
ing models and have shown how to integrate the Eclipse
OCL engine and openArchitectureWare by means of writing
a custom openArchitectureWare workflow component.

As can be seen, the openArchitectureWare workflow engine
can be used as an integration layer and thus helps building
highly customized code generators, which is major benefit
of openArchitectureWare.

7. REFERENCES
[1] oAW Developers. openArchitectureWare

Documentation. openArchitectureWare.org, 2007.

[2] Object Constraint Language Specification. OMG, May
2006.


