B3 | Modeling Unbreakable Builds

Eclipse Modeling Day
Nov 16-19, 2009

Ed Merks, Bjorn Freeman-Benson, Miles Daffin

Modeling Day 2009 b3 | modeling unbreakable builds

1.
2.
3.

agenda

usage scenario: eclipse release assembly
b3 project. overview
usage scenario: enterprise provisioning

Modeling Day 2009 b3 | modeling unbreakable builds

1.

usage scenario: eclipse release assembly

Modeling Day 2009 b3 | modeling unbreakable builds

eclipse as singleton

o Eclipse starts as one project: Java IDE.
- Just one .zip file to download
- Just one update site for updates

Extra features added manually through complex update menus and
wizards

- Java IDE built using custom scripts and headless instances from
IBM .

Modeling Day 2009 b3 | modeling unbreakable builds

eclipse as a small collection

o Eclipse expands to a few core projects
Each still responsible for own builds

Some copy the complex Java IDE build; others use simpler custom,
scripts

Each has its own downloads and update site(s)
Each has its own release schedule and versioning scheme

Consumers struggle with version compatibility and ... (worse) ...
assembling the pieces for a working installation

Modeling Day 2009 b3 | modeling unbreakable builds

assembling the pieces

Assembly has been a problem since the start of the software industry

Assembly = “which source files are compiled and linked into an .exe” or

"which versions of which components are packaged into coherent
whole*

Problem grew as software shifted from a single binary executable into
multiple source files/ executables and then multiple libraries

Modeling Day 2009 b3 | modeling unbreakable builds

many solutions

o Multiple generations of tools: make, autoconf, MSBuild,
cook, ant, maven, and even winzip and msi.
o Commonality: assembles result X from inputs A, B, C and
dependencies.
o Result X may be:
a compiled binary

an installed program...
a library of compatible components

Modeling Day 2009 b3 | modeling unbreakable builds

callisto and europa (2006/7)

o Need: consumers wanted single Eclipse release with all the

correct pieces
Solved by internalizing problem assembling a distro: the Callisto
coordinated release.
o Consumers happy but assembling the single update site

was painful

Committer Dave Williams (IBM) wrote set of perl, grep, awk, and ant
scripts to get the bits & package them into an update site.

It broke more often then it worked!

Modeling Day 2009 b3 | modeling unbreakable builds

new problems

o It broke due to:
New hidden dependencies
New explicit dependencies people forgot to declare in the xml files
Version numbers changed
Included old & unused (thus broken) code
Conflicting dependencies

o It worked by:
loading everything into an Eclipse image
checking to see if it worked
slow and inherently error prone

Modeling Day 2009 b3 | modeling unbreakable builds

ganymede and galileo (2008/09)

o “Dave-o-matic”
Committers Thomas Hallgren and Henrik Lindberg (Cloudsmith)
created new system to replace the custom assembly scripts

Worked better because it used the (powerful) Eclipse/Buckminster
technology to fetch components and resolve dependencies.

Changing output format from the old update site (Ganymede) to new
p2 site (Galileo) relatively trouble-free because descriptions stayed
constant when the tool changed

Still not perfect: custom external scripts and incomplete XML
configuration files

Modeling Day 2009 b3 | modeling unbreakable builds 10

what next?

o Simultaneous release requires same things as anyone
working on complex component-based software
o Formal descriptions of.
components
dependencies
processing
“the result”

o Execution engine that understands all the different
component metadata and file formats.

o In other words, modeling!

Modeling Day 2009 b3 | modeling unbreakable builds

2. b3: project overview

Modeling Day 2009

b3 | modeling unbreakable builds

12

target problem: why are builds so #$%~! complicated?

o Software is developed with the latest technology...
separation of concerns, dependency injection, declarative services,
OSGi, modeling, etc.

o Is built & assembled using the oldest technology...
hand-coded and monolithic scripts created through successive hacks

o S0 it's no surprise everything breaks whenever something changes
or someone else tries to run it

Modeling Day 2009 b3 | modeling unbreakable builds

13

b3 project objective

o New generation of Eclipse technology to supporting build & assembly
processes that are simple, repeatable, and adaptable:

declarative, model-driven, DSL-based process definition
support for discoverable, reusable build/assembly actions
support for composable build/assembly processes

separation between process definition and execution
(who/where/when)

debuggable processes

o Project will deliver a successor to current PDE/Build and
consolidate/clarify related technologies (p2, Buckminster, Athena, etc.)

Modeling Day 2009 b3 | modeling unbreakable builds 14

b3 functional overview

build model “advice” engine actors

LI T
J events
ﬂ ﬂ :‘ l. ;O:i) ..javac —xyz
g | ou®

_ resolvers
Import meta data translators
(materlallzerS) connectors

yitarglet

=E &E
et

Modeling Day 2009 b3 | modeling unbreakable builds 15

goal: maximal simplicity

a=>

Modeling Day 2009 b3 | modeling unbreakable builds

e

Tl ™

“advice”

16

drill-down: b3 DSL

o B3 build files contain info about:
how the environment should be set up
how the model should be advised
- what actions can be performed on the build file

o B3 build files are an XText DSL

concise, powerful way to specify build details based on "advice"
comparison: XML-based approaches

- Alternatives to the build file are also possible
(i.e. programmatically using EMF, MoDisco, Xtext)

Modeling Day 2009 b3 | modeling unbreakable builds

17

drill-down: b3 DSL

o Declarative syntax for
build unit (name, version, visibility, parallel or sequential execution)
build unit interfaces (compare to p2 BU namespace)
provided and required capabilities
build part structure
properties
advice
repositories (and more advanced resolution support)

o Script syntax for build part actions
javascript like syntax for imperative programming
functional programming additions
literal queries (selecting model features, files, results etc.)
set operations, select, reject, collect, exists, foreach

Modeling Day 2009 b3 | modeling unbreakable builds

18

build file example

unit {
requires {
eclipse.feature/org.myorg.myproj/1.0;

}

repositories {
platform:plugin:/;
platform:resource/;
p2:http://www.someplace.good/updates-3.5;
svn:svn+ssh://org.myorg.repo/productx;

}

main {
input { org.myorg.myproj#siteP2;
org.myorg.myproj.packaging;
}
}
}

Modeling Day 2009 b3 | modeling unbreakable builds

19

broad implications

o “Building" is more than just producing a binary from source
Assembling components
Producing a single exe
Producing an Eclipse update site for features
Producing an msi installable unit
Installing an msi on a computer (!)
Producing an internal library of “blessed” & compatible components

Modeling Day 2009 b3 | modeling unbreakable builds

20

3.

Modeling Day 2009

usage scenario: enterprise provisioning

b3 | modeling unbreakable builds

21

O

O

O

O

O

overview

Enterprise constraints & consequences

Enterprise provisioning challenges

Past: delivering 3.2 - 3.4 with internal solution

Present: delivering 3.5 using b3 predecessor

Future: building on b3

Modeling Day 2009

b3 | modeling unbreakable builds

22

enterprise constraints & consequences

o Constraints: cannot allow developers free access to external Eclipse
environment

Against firm policy

Risky (malware,legal & licensing)

Inefficient, chaotic & hard to support
o (Consequences: restrict users to private Eclipse inside the firewall
o Requirements:

Easy to keep up to date

“Clean” IP and safe to use

Provides transitive closure of all dependencies

Modeling Day 2009 b3 | modeling unbreakable builds

23

provisioning challenges

o Objectives:
Provide everything our developers need.

Ensure internal environment is stable and reliable.

Reduce Eclipse TCO

o Requirements
Security & Legal Requirements
Repository aggregation & Mirroring Requirements
Installation Requirements

Modeling Day 2009 b3 | modeling unbreakable builds

24

security & legal requirements (1)

o Primary requirement: restrict user access to internal repos
for browsing, installs and updates

o Secondary requirement: purify repositories of malicious
code and problematic IP

Modeling Day 2009 b3 | modeling unbreakable builds

25

aggregation & mirroring requirements (2)

Mirror Eclipse Platform + 'Jupiter Moon' repositories (core stuff)

Shopping list of 3rd party software from: update sites; p2 repositories;
downloads (update site, p2 repository, feature, plugin)

Ensure all dependencies are met internally
Add homegrown stuff to the mix

Keep resulting configuration up to date
Reduce lag between external and internal updates
|deally, get updates automatically

Expose updated configuration to users in stages
Edit the configuration easily (add/remove software)

Modeling Day 2009 b3 | modeling unbreakable builds

26

installation requirements (3)

o Eclipse installer must:

install a version of eclipse based on a custom profile (e.g. a
shopping list of different plug-ins sourced from internal repositories)

enable the install to be run in a custom environment (e.g. perforce
executables on PATH so plugin will work)

- install an arbitrary selection of “other stuff” with Eclipse install (e.g.
JDKS)

create a “default” install configured with standard global preferences
(e.g. java code format, installed JRES)

support desktop shortcuts, etc.
be reliable & easy to configure and maintain

Modeling Day 2009 b3 | modeling unbreakable builds 27

past: internal solution for 3.2 - 3.4

o Internal solution was basically, a nightmare!

Mirroring: did it work? Gave up all Eclipse-based mirroring tools for
Ganymede SR2 (used wget from unixheads...)

Proprietary mirroring tools not much help

Test process was manual and awkward (install everything into a
vanilla Eclipse!)

Complex ant scripts needed to post-process mirrored repos
. prevent Eclipse from “phoning home”
. hard coded to unstable Eclipse implementation internals
. generate p2 metadata

Installer was a hack
Four internal repositories to be kept in sycn
Could take 3 days to update the main 3rd party repo

Modeling Day 2009 b3 | modeling unbreakable builds 28

present: b3 predecessor for 3.5

o B3 predecessor technologies (Buckminster Aggregator +
P2 director) makes it manageable
Use Buckminster Aggregator for mirroring, verification, testing, etc.
Only two repositories needed to create releases: private Galileo
base repo + public “mega“ repo aggregating everything else
Only maintain 2 build models needed: one for each repo.

Installer uses P2 director to install straight from the mega repo.
Much simpler.

Can build new release of the mega repo in 2-3 hours instead of days

Modeling Day 2009 b3 | modeling unbreakable builds 29

future: building on b3

o Use b3 models to drive/simplify entire Eclipse delivery process
Model build from revision control to source repository (input for
aggregation)

- Add heuristics for coping with aggregation build problems: missing
repositories, IUs, artifacts.

- Add heuristics for auto-update of pre-defined aggregation model
Model more of the installation (non-eclipse IUs, global preferences, etc.)

Intelligent error reporting: “this is what | found” ... “this is what | fixed; this”
... “this is what | couldn’t fix and why”

->Ultimately, just run it all headlessly, once a week.!

B3 IDE — easy-to-use tools for designing, running, testing and debugging
b3 builds

o Extend into other build/assembly domains: Java; C++; .Net, etc..

Modeling Day 2009 b3 | modeling unbreakable builds 30

VISIT US AT

http://www.eclipse.org/b3
http://wiki.eclipse.org/b3
nntp:news://news.eclipse.org/eclipse.b3
irc: irc://irc.freenode.net/#eclipse-b3

Modeling Day 2009 b3 | modeling unbreakable builds

31

