
Parallel Debugging

Parallel Debugging

ª Objective
ª Learn the basics of debugging parallel programs

ª Contents
ª Launching a debug session
ª The Parallel Debug Perspective
ª Controlling sets of processes
ª Controlling individual processes
ª Parallel Breakpoints
ª Terminating processes

Debug-0

Debugging Setup

ª  Debugging requires interactive access to the application
ª  Can use any of the -Interactive target configurations

ª  Torque-Generic-Interactive
ª  PBS-Generic-Interactive
ª  OpenMPI-Generic-Interactive

Parallel Debugging Debug-1

Create a Debug Configuration
ª  A debug configuration is

essentially the same as a run
configuration (like we used
in the Running an Application
module)

ª  It is possible to re-use an
existing configuration and
add debug information

ª  Use the drop-down next to
the debug button (bug icon)
instead of run button

ª  Select Debug
Configurations… to open
the Debug Configurations
dialog

Parallel Debugging Debug-2

Create a New Configuration

ª  Select the existing
configuration

ª  Click on the new button to
create a new configuration

Parallel Debugging Debug-3

Configure the Resources Tab

ª  Select the new
target system
configuration

ª  Choose the queue
ª  Make sure number of

nodes is correct
ª  Make sure the

mpirun command is
selected

ª  Select the number of
processes (in this
case use 5)

ª  Configure modules if
required

Parallel Debugging Debug-4

Configure the Application Tab (Optional)

ª  Select Application tab
ª  Make sure the Project is

correct
ª  Select the application

executable

Parallel Debugging Debug-5

Configure the Debug Tab (Optional)

ª  Select Debugger tab
ª  Debugger will stop at

main() by default
ª  By default the built-in

SDM will be used
ª  Override this if you want to

use your own SDM

ª  Click on Debug to launch

the program

Parallel Debugging Debug-6

Exercise

1.  Open the debug configuration dialog
2.  Create a new configuration
3.  Select the edu.sdsc.trestles.torque.interactive.openmpi

target configuration
4.  Configure the Debug tab

ª  Queue: shared
ª  Number of nodes: 1:ppn=5
ª  MPI Command: mpirun
ª  MPI Number of Processes: 5

5.  Launch the debugger

Parallel Debugging Debug-7

ª  Parallel Debug
view shows job
and processes
being debugged

ª  Debug view shows
threads and call
stack for individual
processes

ª  Source view
shows a current
line marker for all
processes

The Parallel Debug Perspective (1)

Parallel Debugging Debug-8

The Parallel Debug Perspective (2)

ª  Breakpoints view

shows breakpoints
that have been set
(more on this later)

ª  Variables view
shows the current
values of variables
for the currently
selected process in
the Debug view

ª  Outline view (from
CDT) of source
code

Parallel Debugging Debug-9

Stepping All Processes
ª  The buttons in the

Parallel Debug View
control groups of
processes

ª  The Step Over button
will step all processes
one line

ª  The process icons will
change to green
(running), then back to
yellow (suspended)

ª  The current line marker
will move to the next
source line

Parallel Debugging Debug-10

Stepping An Individual Process
ª  The buttons in the

Debug view are used
to control an
individual process, in
this case process 0

ª  The Step Over button
will control just the
one process

ª  There are now two
current line markers,
the first shows the
position of process 0,
the second shows the
positions of processes
1-4

Parallel Debugging Debug-11

Process Sets (1)

ª  Traditional debuggers apply operations to a single
process

ª  Parallel debugging operations apply to a single process
or to arbitrary collections of processes

ª  A process set is a means of simultaneously referring to
one or more processes

Parallel Debugging Debug-12

Process Sets (2)

ª  When a parallel debug session is first started, all
processes are placed in a set, called the Root set

ª  Sets are always associated with a single job
ª  A job can have any number of process sets
ª  A set can contain from 1 to the number of processes in

a job

Parallel Debugging Debug-13

Operations On Process Sets
ª  Debug operations on the

Parallel Debug view
toolbar always apply to the
current set:
ª  Resume, suspend, stop,

step into, step over, step
return

ª  The current process set is
listed next to job name
along with number of
processes in the set

ª  The processes in process
set are visible in right hand
part of the view

Root set = all processes

Parallel Debugging Debug-14

Create set Remove
from set

Delete
set

Change
current set

Managing Process Sets

ª  The remaining icons in the toolbar of the Parallel
Debug view allow you to create, modify, and delete
process sets, and to change the current process set

Parallel Debugging Debug-15

Creating A New Process Set
ª  Select the processes in

the set by clicking and
dragging, in this case,
the last three

ª  The Create Set button
enables a new process
set to be created

ª  The set can be given a
name, in this case
workers

ª  The view is changed to
display only the
selected processes

Parallel Debugging Debug-16

Stepping Using New Process Set
ª  With the workers set

active, the Step Over
button will now
operated on only these
processes

ª  Only the first line
marker will move

ª  After stepping a couple
more times, two line
markers will be visible,
one for the single
master process, and
one for the 4 worker
processes

Parallel Debugging Debug-17

Process Registration

ª Process set commands apply to groups of
processes

ª For finer control and more detailed
information, a process can be registered and
isolated in the Debug view

ª Registered processes, including their stack
traces and threads, appear in the Debug view

ª Any number of processes can be registered,
and processes can be registered or
un-registered at any time

Parallel Debugging Debug-18

Process Registration (2)
ª  By default, process 0 was

registered when the debug
session was launched

ª  Registered processes are
surrounded by a box and
shown in the Debug view

ª  The Debug view only shows
registered processes in the
current set

ª  Since the “workers” set
doesn’t include process 0, it
is no longer displayed in the
Debug view

Parallel Debugging Debug-19

Registering A Process
ª  To register a process,

double-click its process
icon in the Parallel
Debug view or select a
number of processes and
click on the register
button

ª  To un-register a process,
double-click on the
process icon or select a
number of processes and
click on the unregister
button

Individual
(registered)
processes

Groups (sets)
of processes

5-20 Parallel Debugging

Current Line Marker

ª The current line marker is used to show the
current location of suspended processes

ª In traditional programs, there is a single
current line marker (the exception to this is
multi-threaded programs)

ª In parallel programs, there is a current line
marker for every process

ª The PTP debugger shows one current line
marker for every group of processes at the
same location

Parallel Debugging Debug-21

Multiple processes marker

Registered process marker

Un-registered process marker

Colors And Markers

ª  The highlight color depends on
the processes suspended at
that line:
ª  Blue: All registered process(es)
ª  Orange: All unregistered

process(es)
ª  Green: Registered or unregistered

process with no source line (e.g.
suspended in a library routine)

ª  The marker depends on the
type of process stopped at that
location

ª  Hover over marker for more
details about the processes
suspend at that location

Parallel Debugging Debug-22

Exercise

1.  From the initial debugger session, step all processes
until the current line is just after MPI_Init (line 68)

2.  Create a process set called “workers” containing
processes 1-4

3.  Step the “worker” processes twice, observe two line
markers

4.  Hover over markers to see properties
5.  Switch to the “root” set
6.  Step only process 0 twice so that all processes are now

at line 71 (hint – use the debug view)

Parallel Debugging Debug-23

ª  Apply only to processes in the particular set that is
active in the Parallel Debug view when the breakpoint
is created

ª  Breakpoints are colored depending on the active
process set and the set the breakpoint applies to:
ª Green indicates the breakpoint set is the same

as the active set.
ª  Blue indicates some processes in the breakpoint set are

also in the active set (i.e. the process sets overlap)
ª  Yellow indicates the breakpoint set is different from the

active set (i.e. the process sets are disjoint)
ª  When the job completes, the breakpoints are

automatically removed

Breakpoints

Parallel Debugging Debug-24

Creating A Breakpoint
ª  Select the process set that

the breakpoint should apply
to, in this case, the workers
set

ª  Double-click on the left edge
of an editor window, at the
line on which you want to set
the breakpoint, or right click
and use the Parallel
Breakpoint�Toggle
Breakpoint context menu

ª  The breakpoint is displayed
on the marker bar

Parallel Debugging Debug-25

Hitting the Breakpoint
ª  Switch back to the Root set

by clicking on the Change
Set button

ª  Click on the Resume button
in the Parallel Debug view

ª  In this example, the three
worker processes have hit the
breakpoint, as indicated by
the yellow process icons and
the current line marker

ª  Process 0 is still running as its
icon is green

ª  Processes 1-4 are suspended
on the breakpoint

Parallel Debugging Debug-26

More On Stepping
ª  The Step buttons are only

enabled when all processes
in the active set are
suspended (yellow icon)

ª  In this case, process 0 is still
running

ª  Switch to the set of
suspended processes (the
workers set)

ª  You will now see the Step
buttons become enabled

Parallel Debugging Debug-27

Breakpoint Information

ª Hover over breakpoint icon
ª Will show the sets this breakpoint applies to

ª Select Breakpoints view
ª Will show all breakpoints in all projects

Parallel Debugging Debug-28

ª Use the menu in the breakpoints view to group
breakpoints by type

ª Breakpoints sorted by breakpoint set (process
set)

Breakpoints View

Parallel Debugging Debug-29

ª  Apply to all processes and all jobs
ª  Used for gaining control at debugger startup
ª  To create a global breakpoint

ª  First make sure that no jobs are selected (click in white
part of jobs view if necessary)

ª Double-click on the left edge of an editor window
ª Note that if a job is selected, the breakpoint will apply to

the current set

Global Breakpoints

Parallel Debugging Debug-30

Exercise

1.  Select the “worker” process set
2.  Create a breakpoint by double-clicking on right hand

bar at line 88 (worker function)
3.  Hover over breakpoint to see properties
4.  Switch to “root” process set
5.  Observer breakpoint color changes to blue
6.  Resume all processes
7.  Observe “worker” processes at breakpoint, and process

0 still running (green icon)
8.  Switch to “worker” process set
9.  Step “worker” processes over worker() function
10. Observe output from program

Parallel Debugging Debug-31

Terminating A Debug Session
ª  Click on the Terminate

icon in the Parallel
Debug view to
terminate all processes
in the active set

ª  Make sure the Root set
is active if you want to
terminate all processes

ª  You can also use the
terminate icon in the
Debug view to
terminate the currently
selected process

Parallel Debugging Debug-32

Cancelling The Job
ª  Interactive jobs will continue

until the reservation time has
expired

ª  You can cancel the job once
the debug session is finished

ª  Locate the job in the Active
Jobs view
ª  Use the view menu to filter for

only your jobs if there are too
many

ª  Right click on the job and
select Cancel Job

Parallel Debugging Debug-33

Exercise

1.  Switch to the “root” set
2.  Terminate all processes
3.  Switch to the System Monitoring perspective
4.  Right-click on your running job and select Cancel

Parallel Debugging Debug-34

Optional Exercise

1.  Launch another debug job
2.  Create a breakpoint at line 71 in main.c
3.  Resume all processes
4.  Select the Variables view tab if not already selected
5.  Observe value of the “tid” variable
6.  Register one of the worker processes
7.  Select stack frame of worker process in Debug view
8.  Observe value of the “tid” variable matches worker

process
9.  Switch to the breakpoints view, change grouping
10. Terminate all processes
11. Switch to the System Monitoring perspective and

cancel the job
Parallel Debugging Debug-35

