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Context of this work

• The present courseware has been elaborated in the context of the 
MODELWARE European  IST FP6 project (http://www.modelware-
ist.org/). 

• Co-funded by the European Commission, the MODELWARE project 
involves 19 partners from 8 European countries. MODELWARE 
aims to improve software productivity by capitalizing on techniques 
known as Model-Driven Development (MDD). 

• To achieve the goal of large-scale adoption of these MDD 
techniques, MODELWARE promotes the idea of a collaborative 
development of courseware dedicated to this domain.  

• The MDD courseware provided here with the status of open 
source software is produced under the EPL 1.0 license. 

http://www.modelware-ist.org/bb2Forum/index.php
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Assertions

• An assertion is a boolean expression or predicate that 
evaluates to true or false in every state. 

• In the context of a program, assertions express constraints 
on program state that must be true at a specified point during 
execution. 
• In a model/diagram, they document what must be true of an 

implementation of the modelling element. 

• Assertions are typically associated with methods, classes, and 
even individual program statements. 

• They are useful for: 
• helping to write correct software, since they specify what is 

expected behaviour. 
• documentation of interfaces, and for debugging. 
• to improve fault tolerance.
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Pre- and Postconditions

• Assertions associated with methods of a class. 

• Precondition: properties that must be true when the 
method is called. 

• Postcondition: properties that must be true when 
the method returns safely. 

• Can both be optional (true). 
• An optional precondition: “there are no constraints on calling 

this method”. 
• An optional postcondition: “the method body can do anything 

(but it must terminate)”.



Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!5

Example: Assertions for a Stack

public class IntStack { 
        private int[] contents; 
        public int capacity, count; 

        //**  
           * @pre not empty(); 
        */ 
    public int top(); 

        public boolean empty(){ 
          ... 
        } 

        public boolean full(){ 
          ... 
        } 

... 
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Stack Assertions, Continued...

   //** 
           * @pre not empty(); 
           * @post count==count@pre-1; 
        */ 
        public void pop(); 

        //**  
           * @pre not full(); 
           * @post top()==x; 
           * @post count==count@pre+1; 
           * @post contents[count]==x; 
        */ 
     public void push(int x); 
      }
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Assertions in Java

• Java (1.4+) supports very primitive assertions. 

• The Java iContract package is a preprocessor that provides 
very substantial support. 
• www.reliable-systems.com 

• Supports three main types of assertions: 
• @pre, @post, @invariant 

• @pre expr: specifies preconditions 
• @post expr: specifies postconditions. Can refer to value of an 

expression when method was called. 
• expr@pre refers to the value of expr when a method was 

called (can only be used in postconditions) 
• @invariant (more on this soon)
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Design by Contract

• A pre- and postcondition should be viewed as a 
contract that binds a method and its callers. 

“If you promise to call me with the precondition 
satisfied, then I guarantee to deliver a final state 
in which the postcondition holds.” 

• The caller thus knows nothing about how the final 
state is produced, only that they can depend on 
delivery. 

• The method and its implementer need only worry about 
cases where the precondition is true (and none other).
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Obligations and Gains

Obligation Gain

CLIENT Call Push(x) 
when the 

Stack isn’t 
Full()

Gets x added 
to the top of 

the Stack

CLASS AUTHOR Make sure that 
x is on the 

top() of the 
Stack

Need not treat 
the case when 
the Stack is 

full().
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What if the Precondition Fails?

• That is, what should happen if a client foolishly calls 
a method when the precondition is false? 

A precondition violation is the client’s fault! 

• Thus, a false precondition is the result of an error in 
the caller. 
• Extremely helpful in tracking down errors. 
• Failed precondition -> ignore supplier code. 

• Formally, the contract says nothing about what 
should be done if the precondition fails, so any 
behaviour (infinite loop, exception handler, return 
error message) is acceptable.
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Class Invariants

• Classes may have global properties, preserved by 
“all” methods. 

• This is captured in the class invariant.
class IntStack { 
       private int[] contents; 
       public int count, capacity; 
  
       /** 
         * @invariant count >= 0; 
         * @invariant count <= capacity; 
         * @invariant capacity==contents.capacity; 
         * @invariant empty()==(count==0); 
         * @invariant count>0 implies contents[count]==top();  
       */ 
     } 
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Who Must Satisfy the Invariant?

• Despite its name, the invariant need not always be true. 

• The constructors must leave the object in a state satisfying 
the invariant; it cannot assume the invariant. 

• Any legal call made by a client must start from a state 
satisfying the invariant, and must end up in such a state. 

• “Private” methods can do what they like. 
• But if they terminate in a state where the invariant is false, clients 

cannot use the object! 
• This is sometimes too inflexible.  
• Ongoing work at Microsoft Research is suggesting that explicit 

permission for various forms of “rollback” are needed for different 
methods or clients.
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Example - Bank Account

/** 
  * @invariant balance >= 0; 
  */ 
class Bank_Account { 
     public int balance; 
     public Bank_Account() { balance=0; } 
   
     /** 
       * @pre x>0; 
       * @post balance==balance@pre+x; 
      */ 
     public void deposit(int x); 
      
     /** 
       * @pre x<= balance; 
       * @post balance==balance@pre-x; 
      */ 
     void withdraw(int x); 
   }
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Assertions at Run-Time

• The effect of an assertion at run-time should be under the 
control of the developer. 
• Checking assertions takes time (esp. invariants and postconditions). 

• For testing and debugging, checking all assertions is very 
important. 

• For production releases, we may want to turn assertion 
checking off  

• iContract offers no fine-grained control. 
• iContract plus iControl gives complete control over which 

assertions are checked (without modifying source code). 
• iControl: icplus.sourceforge.net/iControl.html
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Inheritance and Assertions

• Assume that we want to build a graphics library 
containing points, segments, vectors, circles, 
polygons, triangles, etc. 

• Use an inheritance hierarchy. 
• At some point in the hierarchy there will be the general 

notion of a Polygon. 
• Specialized polygons will descend from it: rectangle, 

triangle, etc. 

• Polygon class may introduce assertions. 

• What happens to these assertions under 
inheritance?
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General Polygon Class

/** 
       * @invariant count==vertices.size(); 
       * @invariant count>=3; 
       * @invariant forall Object v in vertices | 
       *              (v instanceof Point); 
*/ 
     class Polygon { 
        ... 
        public int count; 
        public double perimeter() { ... } 
        public void display() { ... } 
        public void rotate(Point c,double angle){...} 
        public void translate(double a,b){...} 

        private LinkedList vertices; 
     }
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Assertions are Inherited

• In general, assertions are inherited with the features 
or class to which they apply.  

/** 
  * @invariant count==4; 
  */ 
  class Rectangle extends Polygon { 
    public double side1,side2,diagonal; 
    public double perimeter(){...} 
  } 

• The invariant of Polygon is and-ed to that of 
Rectangle. 

• Question: what if count==2 was added to the 
invariant instead of count==4?
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Assertions and Overriding

• Child classes can override method implementations from a 
parent. 
• But what if the parent method has a contract (that is inherited)? 

• Two alternatives: 
1. Replace inherited implementation but keep the contract. 
• e.g., provide a more efficient implementation 
• e.g., provide a new implementation that does more than the 

original. 
2. Modify the contract and the implementation. 
• ... because the contract may not say exactly what you want. 
• complications will arise with substitution (example).
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Simple Example

// in Polygon, inherited by Rectangle 
/** @pre d>0 */ 
public void rotate(double d); 

Polygon p; Rectangle r; 
if(d>0) p.rotate(d);  // Polygon’s rotate 
p=r; 
if(d>0) p.rotate(d);  // Rectangle’s rotate 
      // Check Polygon’s pre

➢ Even though p is a Rectangle, we must check the precondition of 
Polygon’s version of rotate.
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Assertions and Overriding

• Contracts cannot be invalidated or broken by 
overriding, otherwise clients cannot rely on the 
methods’ results. 

• Thus, the following change  would be illegal.
// in parent   // in child 
/**    /** 
  * @pre x>=0;    * @pre x>=0; 
  * @post return>=0;    * @post return<=0; 
 */     */ 
double sqrt(double x); double sqrt(double x);

➢ Thus, you must do at least what the original contract said, 
but you can also do more.
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Assertions and Overriding Rules

1. The inherited contract cannot be broken. 
2. The inherited contract may be kept unchanged; this 

guarantees that it is not broken. 
• Usage: changing implementation details (method body). 

3. The @pre may be replaced by a weaker one. 
4. The @post may be replaced by a stronger one. 

• Rules 3/4 imply that if you want to change the contract 
under inheritance, you can replace it with a subcontract: 
every behaviour of the new contract satisfies the 
original. 

• Example.
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Class IntSet

public void addZero() 
/** @pre this is not empty 
  * @post add 0 to this 
  */ 

• In a child of IntSet, e.g., Child_IntSet 

public void addZero() 
/** @pre true 
  * @post add 0 to this and add 1 to the        
          number_of_elements 
  */
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Why This Works

IntSet i = new IntSet(…); 
Child_IntSet c = new …; 
i = c; 
if(            ) { c.addZero(); } 
if(            ) { i.addZero(); } 

• Checking the precondition for IntSet’s version is 
sufficient to guarantee that the precondition for 
the child is also true.  

• What should go into the conditions for the ifs?
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Example - Matrix Inversion Routine

/** Version in parent class 
  * @pre epsilon>= pow(10.0,-6); 
  * @post det(sub(mult(this,inverse),identity))<=epsilon; 
  */ 
double invert(double epsilon); 

 =================================================== 

/** Version in subclass; weaker @pre, stronger @post. 
  * @pre epsilon >= pow(10.0,-20.0);  
  * @post det(sub(mult(this,inverse),identity))<=epsilon/2; 
  */ 
double invert(double epsilon);
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Using Subcontracting Efficiently

• A compiler has to check that preconditions are 
weakened, postconditions strengthened. 

• Inefficient for real programs 

• Efficient implementation: use a low-tech language 
convention based on the observations that for 
assertions α, β: 
• α implies (α or γ) 
• (β and γ) implies β 

• i.e., accept weaker preconditions only in form (α or γ) 

• Accept stronger postconditions only in form (β and γ) 
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Language Support

• In iContract-annotated Java this convention is 
implemented as follows: 
• In overridden method, only specify the new clauses. 
• New @pre clauses are automatically or-ed with any inherited 

precondition clauses. 
• New @post clauses are automatically and-ed with any inherited 

postcondition clauses. 

• Overridden contract is automatically a subcontract, 
and no theorem proving needs to be done.
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Design by Contract in UML

• UML is primarily a graphical notation. 
• Uses text for labels and names. 
• Text is also used for writing constraints. 
• Constraint = a restriction on state values. 
• Types are a form of constraint. 

• Constraints will be how we support design by contract in UML. 

• Constraints are also useful for resolving limitations 
with UML’s expressiveness.
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A Motivation for Constraints

• The Video Controller cannot be simultaneously in 
playback mode and record mode. 

• If it is in playback mode, the Tape Controller is in 
read/write mode. 

• Cannot capture this easily and formally in pure UML.

+in_playback_mode : boolean
+in_record_mode : boolean

Video Controller

+is_rw : boolean

Tape Controller

1

tape

1
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Notes and Informal Constraints

• UML supports an informal notion of constraint, called 
a note: any piece of information. 

• A note is a string attached to a model element.

+deposit(in amount : int)
+withdraw(in amount : int)

+balance : int

Bank Account
{Balance must stay within

the range 0-250,000}

➢ There are no restrictions on what can go in a 
note. 

➢ To write formal (machine-checkable) 
constraints, use the standard constraint language 
OCL.
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OCL (Object Constraint Language)

• The constraint/assertion language for UML. 

• Used for writing general constraints on models, and 
also for design-by-contract. 

• Can be applied to any modelling element, not just 
classes. 

• Issues with OCL: 
• programming language-like syntax (similar to C++). 
• “easy to use” by non-formalists. 
• cumbersome in places, can be difficult to support (type check, 

model check) using tools. 

• Used widely in the UML metamodel.
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OCL - Essential Capabilities

1.Specifying which model element is to be constrained 
(the context). 

2.Navigating through models to identify objects that 
are relevant to a constraint (navigation expressions). 
• Can constrain values of attributes and related objects. 

3.Asserting properties about relationships between 
objects (expressions).
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OCL Context

• OCL constraints are usually written textually, 
separate from the graphical UML model. 

• Consider a Bank Account class with an integer 
balance. 

• OCL constraint: 
 context Bank Account inv: 
 self.balance>=0 and self.balance<=250,000 

• The constraint applies in the context of the class 
Bank Account.
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Navigation Expressions

• OCL provides the means for referring to objects that 
are linked to a specified context object. 

• Linked objects are obtained starting from the 
context object. 
• Links are followed to gain access to other objects of interest 

(similar to references in Java/C++/Eiffel). 
• Complexity arises when collections (e.g., sets, sequences, bags, 

etc.) are navigated. 

• Personnel system running example...
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Example - Personnel System

Department

+age() : int

+name

Person

Company

+salary

Grade

1

-staff*

-manager* 0..1 1

*

*

1start_date

Contract

*

+employees

1

+employer

*

1
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Following Links

• Basic form of navigation involves following links from 
one object to another. 

• Specify by giving names of associations to be 
traversed. 

• Denote set of employees working in department. 
   context Department  
   self.staff 

• If association has no role name, use name of class at 
far end of association (unless it is ambiguous) 

            context Company 
            self.department
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Names and Constraints

• An OCL invariant need not be applicable to any 
instance (i.e., self). 

   context bart : Person inv: 
   bart.age == 10 

• An OCL invariant may optionally be given a name; the 
name can be used by simulators, debuggers, and in 
documentation. 

   context bart : Person inv how_old: 
   bart.age == 10
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Basic Values and Types

• OCL supports a number of basic types and typical 
operations upon them. 
• e.g., Boolean, Integer, Real, String 

• Collection, Set, Bag, Sequence, and Tuple are basic types as 
well. 

• Iterative operations and operators will be defined shortly 
for making use of these. 

• Every class appearing in a UML model can also be used as an 
OCL type. 

• Type conformance rules are as in UML, i.e., 
• types conform to supertypes 
• Set, Bag, and Sequence conform to Collection
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Predefined Operations

• Available on all objects: 
• oclIsTypeOf(t:OclType): true if self and t are the same 
• oclInState(s:OclState): true if self is in the state specified by 

s. s is the name of some state in the statechart for the class. 
• oclIsNew(): true if used in a postcondition and the object is 

created by the operation. 
• casting (next slide)
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Casting

• For better or for worse, casting (re-typing) is 
permitted in OCL. 

• An object may be cast to one of its subtypes if it is 
known that the object’s dynamic type is that of a 
subtype. 

• Use the oclAsType(OclType) operation. 

• Example: 
 homer.oclAsType(Employee) 

 treats homer as an Employee, not a Person.
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Three-Valued Logic

• The logic for OCL is actually 3-valued. 
• An expression can evaluate to true, false, or undefined. 
• Examples:  
• an illegal cast returns undefined. 
• taking the first() element of an empty sequence is undefined. 

• How does this affect the truth tables for expressions? 
• An expression is undefined if one of its arguments is 

undefined, except: 
• true OR anything is true 
• false AND anything is false 
• false IMPLIES anything is true.
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Collections

• A navigation expression denotes the objects retrieved by 
following links. 

• Depending on multiplicities of associations, the number of 
objects retrieved may vary. 

   context Person 
   self.department 

• This retrieves one object. 
• A navigation expression that can return more than one object 

returns a collection (a set or a bag). 
• Iterated traversals produce bags; single traversals produce sets. 

• Collections may be nested (earlier versions of OCL flattened 
all collections, e.g., OCL 1.x)
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Iterated Traversal

• Navigations can be composed; more complicated 
paths through a diagram can be denoted 

• All the people who work for a company 
   context Company 
   self.department.staff 

• Evaluate in a step-by-step manner: 
• self.department gives a set of departments. 
• staff is then applied to each element of the set, producing a 

bag of people.
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Operations on Objects and Collections

• Operations and attributes defined for classes in a 
model can be used in OCL expressions, e.g., 

   context Person 
   self.age()   
   self.contract.grade.salary 

• Collections come with some built-in operations, 
accessed using ->, typically producing bags. 
• sum(): applicable to numeric collections 

 context Department inv: 
 self.staff.contract.grade.salary->sum() 

• asSet(): converts bags to sets, removing duplicates 
 self.staff.contract.grade->asSet()->size()
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‘Select’ on Collections

• A built-in operation for picking out specific objects 
from larger collections (a quantifier). 

• Example: all employees with a salary greater than 
£50,000. 

context Company inv: 
employees->select(p:Person|p.contract.grade.salary>50000) 

• Can define further navigations on the result of the 
select. 

• Think of OCL quantifiers as iterators over data 
structures (ie., operationally).
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‘Collect’ on Collections

• The collect operation takes an expression and returns 
a bag containing all values of expression. 

 context Department inv: 
 staff->collect(p:Person | p.age()) 

• Returns ages of all employees in a department. 

• Avoid dropping name and type of bound variables - 
can easily lead to ambiguity. 
• OCL guide is careless on this!
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Basic Constraints

• OCL can be used to write arbitrarily complex 
constraints.  

• Some invariant examples in context Person 
• self.employer = self.department.company 
• employer.grade->includes(contract.grade) 
• age()>50 implies   

contract.grade.salary>25000 

• Some invariant examples in context Company 
• employees->select(age()<18)->isEmpty() 
• grade->forAll(g:Grade|not g.contract->    

 isEmpty()) 

• Correspond to class invariants.
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Iterative Constraints

• Select is an iterative constraint defined on a 
collection. 

• Others include: 
• forAll: return true if every member of collection satisfies 

the boolean expression 
• exists: true if there is one member of the collection 

satisfying the boolean expression 
• allInstances: returns all instances of a type, e.g., 
Grade.allInstances->forAll(g:Grade | g.salary>20000) 

• Use allInstances very carefully! It’s not always 
necessary to use it (e.g., as in above example), and it 
is often difficult to implement it.
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Using ‘forAll’ and ‘exists’

• At least one employee appointed at every 
grade in the company. 

context Company inv: 
grade->forAll(g:Grade|not g.contract->isEmpty()) 

• Every department has a head (i.e., an 
employee with no manager). 

context Department inv: 
staff->exists(e:Employee | e.manager->isEmpty())
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Using ‘allInstances’

• It is not necessary to use allInstances in the 
previous example. 
• The constraint expresses that salary must be at least 20000 

in all grades. So put the constraint with the appropriate class!  
  context Grade inv: 
  self.salary > 20000 

• When might allInstances be useful? 
• Specifying a change in the objects known to a system (e.g., the 

result of new or malloc, or the addition of a new object from 
outside the system).
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Pre/Postconditions

• Preconditions are standard OCL constraints that can 
refer to arguments and the prestate of an operation. 

• Postconditions can refer to arguments, the prestate, 
the result of a function, and the poststate of an 
operation. 
• @pre: value of an expression evaluated in a prestate 
• result: the value returned by a function call 

• Example: 
  context Savings_Account::withdraw(int amount) 
  pre: amount <= balance 

  post: balance = balance@pre-amount
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Design by Contract

• The usual laws of design by contract should be 
followed with UML and OCL: 
• preconditions may be weakened (‘or’ new clauses) 
• postconditions may be strengthened (‘and’ new clauses) 
• new clauses may be and-ed to the invariant 

• OCL does not require that you follow these rules, but 
it is strongly recommended. 

• Modified contracts must maintain consistency!
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Generalization and OCL

• Generalization relationships are not navigable - they 
do not usually feature in writing constraints. 

• But generalizations may be constrained. 

• Example: a Customer must hold at least one Current 
account.

Customer Account

Current Account Chequing Account Mortgage Account

holds

1

*
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Messages and Signals

• OCL 2.0 now supports messages. 
• Messages can be sent to objects, and correspond either to 

operation calls or signals in a UML model. 
• Signals are the simplest form of inter-object communication in 

UML. 
• Think of a signal as a class (with attributes, operations, etc) 

that represents communication. 
• A signal will be instantiated (with values for attributes) and can 

generate state transitions in its recipient. 
• In a UML model, a signal is drawn as a class with a <<signal>> 

stereotype. 
• Examples: InputEvent, MouseButtonUp, MouseButtonDown, etc.
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Sending Signals

• To specify that communication has taken place, use 
the hasSent operator ^. 

• Example:  
 context Subject::hasChanged() 
 post: observer^update(12,14) 

• The hasSent results in true if an update message 
with the specified arguments was sent to observer 
during execution of the operation. 

• Arguments can be omitted (replace with ?)


