
Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!1

Assertions, Constraints and OCL

Mechanisms and Methodology

Department of Computer Science,
The University of York, Heslington, York YO10 5DD, England

http://www.cs.york.ac.uk/~paige

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!2

Context of this work

• The present courseware has been elaborated in the context of the
MODELWARE European IST FP6 project (http://www.modelware-
ist.org/).

• Co-funded by the European Commission, the MODELWARE project
involves 19 partners from 8 European countries. MODELWARE
aims to improve software productivity by capitalizing on techniques
known as Model-Driven Development (MDD).

• To achieve the goal of large-scale adoption of these MDD
techniques, MODELWARE promotes the idea of a collaborative
development of courseware dedicated to this domain.

• The MDD courseware provided here with the status of open
source software is produced under the EPL 1.0 license.

http://www.modelware-ist.org/bb2Forum/index.php

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!3

Assertions

• An assertion is a boolean expression or predicate that
evaluates to true or false in every state.

• In the context of a program, assertions express constraints
on program state that must be true at a specified point during
execution.
• In a model/diagram, they document what must be true of an

implementation of the modelling element.

• Assertions are typically associated with methods, classes, and
even individual program statements.

• They are useful for:
• helping to write correct software, since they specify what is

expected behaviour.
• documentation of interfaces, and for debugging.
• to improve fault tolerance.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!4

Pre- and Postconditions

• Assertions associated with methods of a class.

• Precondition: properties that must be true when the
method is called.

• Postcondition: properties that must be true when
the method returns safely.

• Can both be optional (true).
• An optional precondition: “there are no constraints on calling

this method”.
• An optional postcondition: “the method body can do anything

(but it must terminate)”.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!5

Example: Assertions for a Stack

public class IntStack {
 private int[] contents;
 public int capacity, count;

 //**
 * @pre not empty();
 */
 public int top();

 public boolean empty(){
 ...
 }

 public boolean full(){
 ...
 }

...

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!6

Stack Assertions, Continued...

 //**
 * @pre not empty();
 * @post count==count@pre-1;
 */
 public void pop();

 //**
 * @pre not full();
 * @post top()==x;
 * @post count==count@pre+1;
 * @post contents[count]==x;
 */
 public void push(int x);
 }

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!7

Assertions in Java

• Java (1.4+) supports very primitive assertions.

• The Java iContract package is a preprocessor that provides
very substantial support.
• www.reliable-systems.com

• Supports three main types of assertions:
• @pre, @post, @invariant

• @pre expr: specifies preconditions
• @post expr: specifies postconditions. Can refer to value of an

expression when method was called.
• expr@pre refers to the value of expr when a method was

called (can only be used in postconditions)
• @invariant (more on this soon)

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!8

Design by Contract

• A pre- and postcondition should be viewed as a
contract that binds a method and its callers.

“If you promise to call me with the precondition
satisfied, then I guarantee to deliver a final state
in which the postcondition holds.”

• The caller thus knows nothing about how the final
state is produced, only that they can depend on
delivery.

• The method and its implementer need only worry about
cases where the precondition is true (and none other).

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!9

Obligations and Gains

Obligation Gain

CLIENT Call Push(x)
when the

Stack isn’t
Full()

Gets x added
to the top of

the Stack

CLASS AUTHOR Make sure that
x is on the

top() of the
Stack

Need not treat
the case when
the Stack is

full().

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!10

What if the Precondition Fails?

• That is, what should happen if a client foolishly calls
a method when the precondition is false?

A precondition violation is the client’s fault!

• Thus, a false precondition is the result of an error in
the caller.
• Extremely helpful in tracking down errors.
• Failed precondition -> ignore supplier code.

• Formally, the contract says nothing about what
should be done if the precondition fails, so any
behaviour (infinite loop, exception handler, return
error message) is acceptable.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!11

Class Invariants

• Classes may have global properties, preserved by
“all” methods.

• This is captured in the class invariant.
class IntStack {
 private int[] contents;
 public int count, capacity;

 /**
 * @invariant count >= 0;
 * @invariant count <= capacity;
 * @invariant capacity==contents.capacity;
 * @invariant empty()==(count==0);
 * @invariant count>0 implies contents[count]==top();
 */
 }

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!12

Who Must Satisfy the Invariant?

• Despite its name, the invariant need not always be true.

• The constructors must leave the object in a state satisfying
the invariant; it cannot assume the invariant.

• Any legal call made by a client must start from a state
satisfying the invariant, and must end up in such a state.

• “Private” methods can do what they like.
• But if they terminate in a state where the invariant is false, clients

cannot use the object!
• This is sometimes too inflexible.
• Ongoing work at Microsoft Research is suggesting that explicit

permission for various forms of “rollback” are needed for different
methods or clients.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!13

Example - Bank Account

/**
 * @invariant balance >= 0;
 */
class Bank_Account {
 public int balance;
 public Bank_Account() { balance=0; }

 /**
 * @pre x>0;
 * @post balance==balance@pre+x;
 */
 public void deposit(int x);

 /**
 * @pre x<= balance;
 * @post balance==balance@pre-x;
 */
 void withdraw(int x);
 }

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!14

Assertions at Run-Time

• The effect of an assertion at run-time should be under the
control of the developer.
• Checking assertions takes time (esp. invariants and postconditions).

• For testing and debugging, checking all assertions is very
important.

• For production releases, we may want to turn assertion
checking off

• iContract offers no fine-grained control.
• iContract plus iControl gives complete control over which

assertions are checked (without modifying source code).
• iControl: icplus.sourceforge.net/iControl.html

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!15

Inheritance and Assertions

• Assume that we want to build a graphics library
containing points, segments, vectors, circles,
polygons, triangles, etc.

• Use an inheritance hierarchy.
• At some point in the hierarchy there will be the general

notion of a Polygon.
• Specialized polygons will descend from it: rectangle,

triangle, etc.

• Polygon class may introduce assertions.

• What happens to these assertions under
inheritance?

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!16

General Polygon Class

/**
 * @invariant count==vertices.size();
 * @invariant count>=3;
 * @invariant forall Object v in vertices |
 * (v instanceof Point);
*/
 class Polygon {
 ...
 public int count;
 public double perimeter() { ... }
 public void display() { ... }
 public void rotate(Point c,double angle){...}
 public void translate(double a,b){...}

 private LinkedList vertices;
 }

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!17

Assertions are Inherited

• In general, assertions are inherited with the features
or class to which they apply.

/**
 * @invariant count==4;
 */
 class Rectangle extends Polygon {
 public double side1,side2,diagonal;
 public double perimeter(){...}
 }

• The invariant of Polygon is and-ed to that of
Rectangle.

• Question: what if count==2 was added to the
invariant instead of count==4?

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!18

Assertions and Overriding

• Child classes can override method implementations from a
parent.
• But what if the parent method has a contract (that is inherited)?

• Two alternatives:
1. Replace inherited implementation but keep the contract.
• e.g., provide a more efficient implementation
• e.g., provide a new implementation that does more than the

original.
2. Modify the contract and the implementation.
• ... because the contract may not say exactly what you want.
• complications will arise with substitution (example).

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!19

Simple Example

// in Polygon, inherited by Rectangle
/** @pre d>0 */
public void rotate(double d);

Polygon p; Rectangle r;
if(d>0) p.rotate(d); // Polygon’s rotate
p=r;
if(d>0) p.rotate(d); // Rectangle’s rotate
 // Check Polygon’s pre

➢ Even though p is a Rectangle, we must check the precondition of
Polygon’s version of rotate.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!20

Assertions and Overriding

• Contracts cannot be invalidated or broken by
overriding, otherwise clients cannot rely on the
methods’ results.

• Thus, the following change would be illegal.
// in parent // in child
/** /**
 * @pre x>=0; * @pre x>=0;
 * @post return>=0; * @post return<=0;
 */ */
double sqrt(double x); double sqrt(double x);

➢ Thus, you must do at least what the original contract said,
but you can also do more.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!21

Assertions and Overriding Rules

1. The inherited contract cannot be broken.
2. The inherited contract may be kept unchanged; this

guarantees that it is not broken.
• Usage: changing implementation details (method body).

3. The @pre may be replaced by a weaker one.
4. The @post may be replaced by a stronger one.

• Rules 3/4 imply that if you want to change the contract
under inheritance, you can replace it with a subcontract:
every behaviour of the new contract satisfies the
original.

• Example.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!22

Class IntSet

public void addZero()
/** @pre this is not empty
 * @post add 0 to this
 */

• In a child of IntSet, e.g., Child_IntSet

public void addZero()
/** @pre true
 * @post add 0 to this and add 1 to the
 number_of_elements
 */

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!23

Why This Works

IntSet i = new IntSet(…);
Child_IntSet c = new …;
i = c;
if() { c.addZero(); }
if() { i.addZero(); }

• Checking the precondition for IntSet’s version is
sufficient to guarantee that the precondition for
the child is also true.

• What should go into the conditions for the ifs?

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!24

Example - Matrix Inversion Routine

/** Version in parent class
 * @pre epsilon>= pow(10.0,-6);
 * @post det(sub(mult(this,inverse),identity))<=epsilon;
 */
double invert(double epsilon);

 ===

/** Version in subclass; weaker @pre, stronger @post.
 * @pre epsilon >= pow(10.0,-20.0);
 * @post det(sub(mult(this,inverse),identity))<=epsilon/2;
 */
double invert(double epsilon);

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!25

Using Subcontracting Efficiently

• A compiler has to check that preconditions are
weakened, postconditions strengthened.

• Inefficient for real programs

• Efficient implementation: use a low-tech language
convention based on the observations that for
assertions α, β:
• α implies (α or γ)
• (β and γ) implies β

• i.e., accept weaker preconditions only in form (α or γ)

• Accept stronger postconditions only in form (β and γ)

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!26

Language Support

• In iContract-annotated Java this convention is
implemented as follows:
• In overridden method, only specify the new clauses.
• New @pre clauses are automatically or-ed with any inherited

precondition clauses.
• New @post clauses are automatically and-ed with any inherited

postcondition clauses.

• Overridden contract is automatically a subcontract,
and no theorem proving needs to be done.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!27

Design by Contract in UML

• UML is primarily a graphical notation.
• Uses text for labels and names.
• Text is also used for writing constraints.
• Constraint = a restriction on state values.
• Types are a form of constraint.

• Constraints will be how we support design by contract in UML.

• Constraints are also useful for resolving limitations
with UML’s expressiveness.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!28

A Motivation for Constraints

• The Video Controller cannot be simultaneously in
playback mode and record mode.

• If it is in playback mode, the Tape Controller is in
read/write mode.

• Cannot capture this easily and formally in pure UML.

+in_playback_mode : boolean
+in_record_mode : boolean

Video Controller

+is_rw : boolean

Tape Controller

1

tape

1

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!29

Notes and Informal Constraints

• UML supports an informal notion of constraint, called
a note: any piece of information.

• A note is a string attached to a model element.

+deposit(in amount : int)
+withdraw(in amount : int)

+balance : int

Bank Account
{Balance must stay within

the range 0-250,000}

➢ There are no restrictions on what can go in a
note.

➢ To write formal (machine-checkable)
constraints, use the standard constraint language
OCL.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!30

OCL (Object Constraint Language)

• The constraint/assertion language for UML.

• Used for writing general constraints on models, and
also for design-by-contract.

• Can be applied to any modelling element, not just
classes.

• Issues with OCL:
• programming language-like syntax (similar to C++).
• “easy to use” by non-formalists.
• cumbersome in places, can be difficult to support (type check,

model check) using tools.

• Used widely in the UML metamodel.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!31

OCL - Essential Capabilities

1.Specifying which model element is to be constrained
(the context).

2.Navigating through models to identify objects that
are relevant to a constraint (navigation expressions).
• Can constrain values of attributes and related objects.

3.Asserting properties about relationships between
objects (expressions).

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!32

OCL Context

• OCL constraints are usually written textually,
separate from the graphical UML model.

• Consider a Bank Account class with an integer
balance.

• OCL constraint:
 context Bank Account inv:
 self.balance>=0 and self.balance<=250,000

• The constraint applies in the context of the class
Bank Account.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!33

Navigation Expressions

• OCL provides the means for referring to objects that
are linked to a specified context object.

• Linked objects are obtained starting from the
context object.
• Links are followed to gain access to other objects of interest

(similar to references in Java/C++/Eiffel).
• Complexity arises when collections (e.g., sets, sequences, bags,

etc.) are navigated.

• Personnel system running example...

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!34

Example - Personnel System

Department

+age() : int

+name

Person

Company

+salary

Grade

1

-staff*

-manager* 0..1 1

*

*

1start_date

Contract

*

+employees

1

+employer

*

1

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!35

Following Links

• Basic form of navigation involves following links from
one object to another.

• Specify by giving names of associations to be
traversed.

• Denote set of employees working in department.
 context Department
 self.staff

• If association has no role name, use name of class at
far end of association (unless it is ambiguous)

 context Company
 self.department

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!36

Names and Constraints

• An OCL invariant need not be applicable to any
instance (i.e., self).

 context bart : Person inv:
 bart.age == 10

• An OCL invariant may optionally be given a name; the
name can be used by simulators, debuggers, and in
documentation.

 context bart : Person inv how_old:
 bart.age == 10

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!37

Basic Values and Types

• OCL supports a number of basic types and typical
operations upon them.
• e.g., Boolean, Integer, Real, String

• Collection, Set, Bag, Sequence, and Tuple are basic types as
well.

• Iterative operations and operators will be defined shortly
for making use of these.

• Every class appearing in a UML model can also be used as an
OCL type.

• Type conformance rules are as in UML, i.e.,
• types conform to supertypes
• Set, Bag, and Sequence conform to Collection

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!38

Predefined Operations

• Available on all objects:
• oclIsTypeOf(t:OclType): true if self and t are the same
• oclInState(s:OclState): true if self is in the state specified by

s. s is the name of some state in the statechart for the class.
• oclIsNew(): true if used in a postcondition and the object is

created by the operation.
• casting (next slide)

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!39

Casting

• For better or for worse, casting (re-typing) is
permitted in OCL.

• An object may be cast to one of its subtypes if it is
known that the object’s dynamic type is that of a
subtype.

• Use the oclAsType(OclType) operation.

• Example:
 homer.oclAsType(Employee)

 treats homer as an Employee, not a Person.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!40

Three-Valued Logic

• The logic for OCL is actually 3-valued.
• An expression can evaluate to true, false, or undefined.
• Examples:
• an illegal cast returns undefined.
• taking the first() element of an empty sequence is undefined.

• How does this affect the truth tables for expressions?
• An expression is undefined if one of its arguments is

undefined, except:
• true OR anything is true
• false AND anything is false
• false IMPLIES anything is true.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!41

Collections

• A navigation expression denotes the objects retrieved by
following links.

• Depending on multiplicities of associations, the number of
objects retrieved may vary.

 context Person
 self.department

• This retrieves one object.
• A navigation expression that can return more than one object

returns a collection (a set or a bag).
• Iterated traversals produce bags; single traversals produce sets.

• Collections may be nested (earlier versions of OCL flattened
all collections, e.g., OCL 1.x)

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!42

Iterated Traversal

• Navigations can be composed; more complicated
paths through a diagram can be denoted

• All the people who work for a company
 context Company
 self.department.staff

• Evaluate in a step-by-step manner:
• self.department gives a set of departments.
• staff is then applied to each element of the set, producing a

bag of people.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!43

Operations on Objects and Collections

• Operations and attributes defined for classes in a
model can be used in OCL expressions, e.g.,

 context Person
 self.age()
 self.contract.grade.salary

• Collections come with some built-in operations,
accessed using ->, typically producing bags.
• sum(): applicable to numeric collections

 context Department inv:
 self.staff.contract.grade.salary->sum()

• asSet(): converts bags to sets, removing duplicates
 self.staff.contract.grade->asSet()->size()

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!44

‘Select’ on Collections

• A built-in operation for picking out specific objects
from larger collections (a quantifier).

• Example: all employees with a salary greater than
£50,000.

context Company inv:
employees->select(p:Person|p.contract.grade.salary>50000)

• Can define further navigations on the result of the
select.

• Think of OCL quantifiers as iterators over data
structures (ie., operationally).

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!45

‘Collect’ on Collections

• The collect operation takes an expression and returns
a bag containing all values of expression.

 context Department inv:
 staff->collect(p:Person | p.age())

• Returns ages of all employees in a department.

• Avoid dropping name and type of bound variables -
can easily lead to ambiguity.
• OCL guide is careless on this!

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!46

Basic Constraints

• OCL can be used to write arbitrarily complex
constraints.

• Some invariant examples in context Person
• self.employer = self.department.company
• employer.grade->includes(contract.grade)
• age()>50 implies

contract.grade.salary>25000

• Some invariant examples in context Company
• employees->select(age()<18)->isEmpty()
• grade->forAll(g:Grade|not g.contract->

 isEmpty())

• Correspond to class invariants.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!47

Iterative Constraints

• Select is an iterative constraint defined on a
collection.

• Others include:
• forAll: return true if every member of collection satisfies

the boolean expression
• exists: true if there is one member of the collection

satisfying the boolean expression
• allInstances: returns all instances of a type, e.g.,
Grade.allInstances->forAll(g:Grade | g.salary>20000)

• Use allInstances very carefully! It’s not always
necessary to use it (e.g., as in above example), and it
is often difficult to implement it.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!48

Using ‘forAll’ and ‘exists’

• At least one employee appointed at every
grade in the company.

context Company inv:
grade->forAll(g:Grade|not g.contract->isEmpty())

• Every department has a head (i.e., an
employee with no manager).

context Department inv:
staff->exists(e:Employee | e.manager->isEmpty())

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!49

Using ‘allInstances’

• It is not necessary to use allInstances in the
previous example.
• The constraint expresses that salary must be at least 20000

in all grades. So put the constraint with the appropriate class!
 context Grade inv:
 self.salary > 20000

• When might allInstances be useful?
• Specifying a change in the objects known to a system (e.g., the

result of new or malloc, or the addition of a new object from
outside the system).

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!50

Pre/Postconditions

• Preconditions are standard OCL constraints that can
refer to arguments and the prestate of an operation.

• Postconditions can refer to arguments, the prestate,
the result of a function, and the poststate of an
operation.
• @pre: value of an expression evaluated in a prestate
• result: the value returned by a function call

• Example:
 context Savings_Account::withdraw(int amount)
 pre: amount <= balance

 post: balance = balance@pre-amount

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!51

Design by Contract

• The usual laws of design by contract should be
followed with UML and OCL:
• preconditions may be weakened (‘or’ new clauses)
• postconditions may be strengthened (‘and’ new clauses)
• new clauses may be and-ed to the invariant

• OCL does not require that you follow these rules, but
it is strongly recommended.

• Modified contracts must maintain consistency!

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!52

Generalization and OCL

• Generalization relationships are not navigable - they
do not usually feature in writing constraints.

• But generalizations may be constrained.

• Example: a Customer must hold at least one Current
account.

Customer Account

Current Account Chequing Account Mortgage Account

holds

1

*

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!53

Messages and Signals

• OCL 2.0 now supports messages.
• Messages can be sent to objects, and correspond either to

operation calls or signals in a UML model.
• Signals are the simplest form of inter-object communication in

UML.
• Think of a signal as a class (with attributes, operations, etc)

that represents communication.
• A signal will be instantiated (with values for attributes) and can

generate state transitions in its recipient.
• In a UML model, a signal is drawn as a class with a <<signal>>

stereotype.
• Examples: InputEvent, MouseButtonUp, MouseButtonDown, etc.

Assertions, Constraints, OCL and Contracting

 Eclipse ECESIS Project!54

Sending Signals

• To specify that communication has taken place, use
the hasSent operator ^.

• Example:
 context Subject::hasChanged()
 post: observer^update(12,14)

• The hasSent results in true if an update message
with the specified arguments was sent to observer
during execution of the operation.

• Arguments can be omitted (replace with ?)

