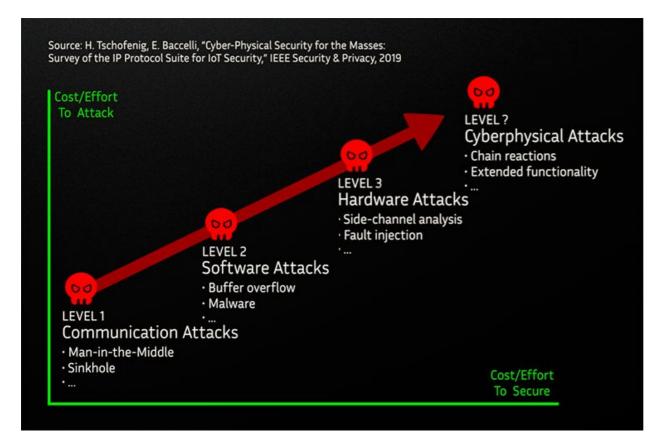

Longer-Term Security for Low-Power IoT Software

Eclipse IoT Day 2023


Emmanuel Baccelli

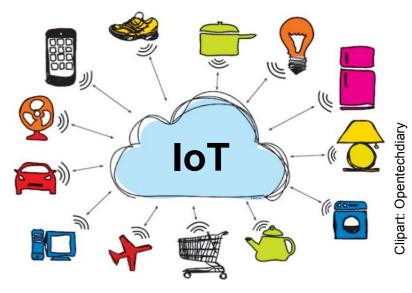
Inria & FU Berlin

Inia Freie Universität

Inia Freie Universität

Main focus in this talk: defend against

- \star communication attacks;
- \star software attacks;


Inia Freie Universität

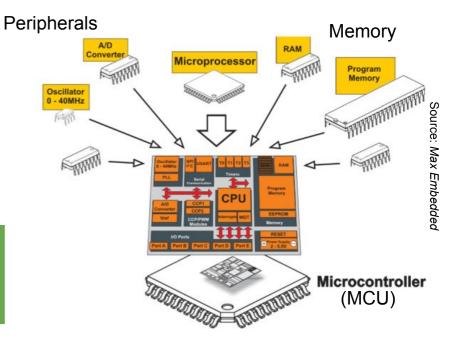
The Internet of Things (IoT)

IoT is everywhere...

In virtually all verticals: predictive maintenance (Industry 4.0), smart health, (token) contact tracing, connected vehicles ECUs, smart home/building, precision agriculture, TinyML etc.

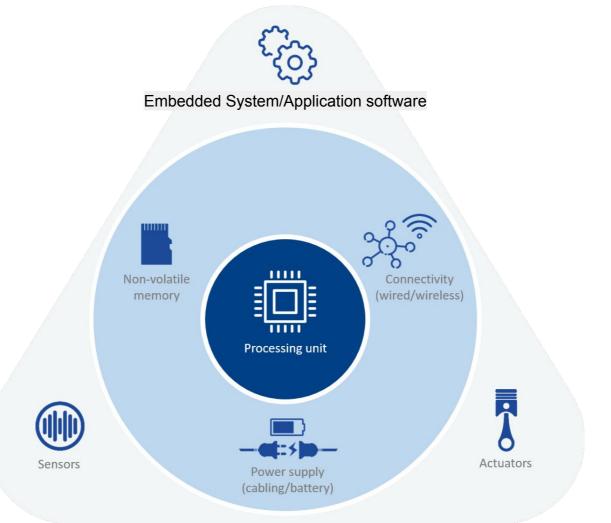
... and IoT depends upon low-power devices. Low-power devices are used in more varied use cases. They run increasingly complex software.

- 1. Context
- 2. Anatomy of Low-Power IoT
- 3. Firmware Update Security for Low-Power IoT
- 4. Function-as-a-Service Primitives for Low-Power IoT


Low-Power IoT ?

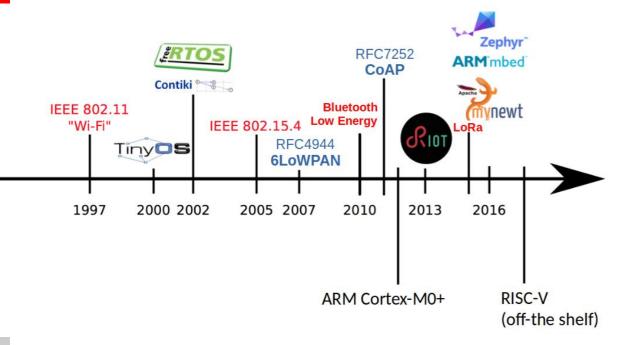
What's low-power? Microcontrollers.

- → milliWatt
- → kiloBytes
- → megaHertz


Compared to processors in "high-end" IoT (phone, RasPi...):

- \rightarrow much less capacity in computing, networking, memory;
- \rightarrow much smaller energy consumption & tiny price tag (<1\$).

Some stats:


- 28 billion MCU shipped in 2018
- 250 billion microcontrollers used worldwide in 2020 Source: venturebeat.com/2020/01/11/why-tinyml-is-a-giant-opportunity/

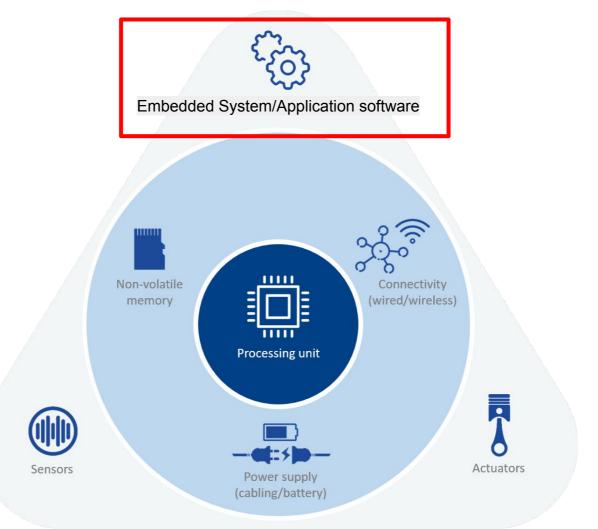
Únría Freie Universität

Source: 2018 Enisa Summer school

nnín — Freie Universität

Low-power Hardware

★ Modern 32-bit MCUs: Arm Cortex-M, ESP, RISC-V (open source HW)...


Low-power Wireless Networking

- ★ Hardware PHY / MAC based on BLE, 802.15.4, LoRa, NB-IoT, (EnOcean)...
- ★ Internet-compliant protocol stack:
 6LoWPAN, CoAP, (COSE, OSCORE)...
- ★ Interact with cloud/edge, or local devices

Embedded Software

- ★ Ecosystem of "plug-in" libs & network stacks:
 Eclipse projects, mbedTLS, LVGL, libCOSE, openThread, littleFS, uTensor...
- ★ Open source operating systems: RIOT, Contiki, mbedOS (Arm), Zephyr (Intel), FreeRTOS (Amazon), LiteOS (Huawei)

Anatomy of a Low-Power IoT Device

Ínría Freie Universität

Source: 2018 Enisa Summer school

Predicates?

- 1. You can't secure what you can't update but updates are also attack vectors;
- 2. Software updates happen through the network else they tend to not happen at all;
- 3. Complex software becomes composite, (tele)maintenance must be distributed.

Constraints from IoT?

- Ultra-small storage on device
- Weak CPU
- Ultra-constrained network transport
- ... and more (memory protection, secured boot...)

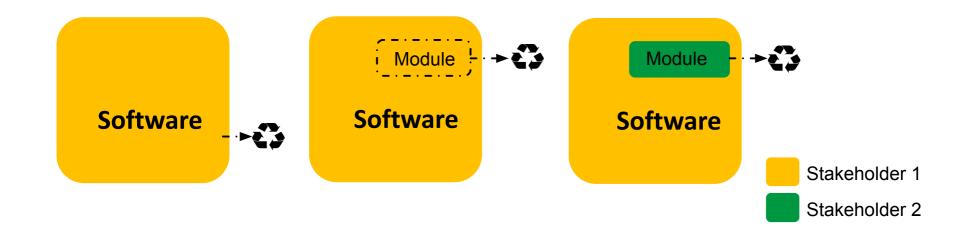
Minimum guarantees?

- Authentication
- Integrity
- Authorization
- ... and more? (roll-back, pre-conditions...)

naío — Freie Universität

What's a reasonable general strategy?

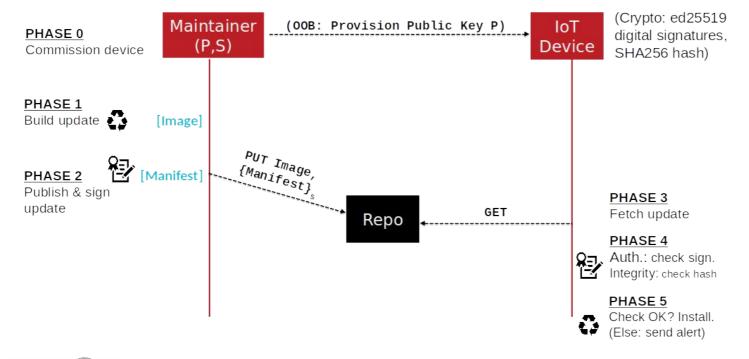
- 1. Facilitate long-term interoperability? Use (open) standards;
- 2. Facilitate long-term maintenance? Use open source collaborative software;
- 3. Quantum-level security? Minimum: software update authentication/authorization.

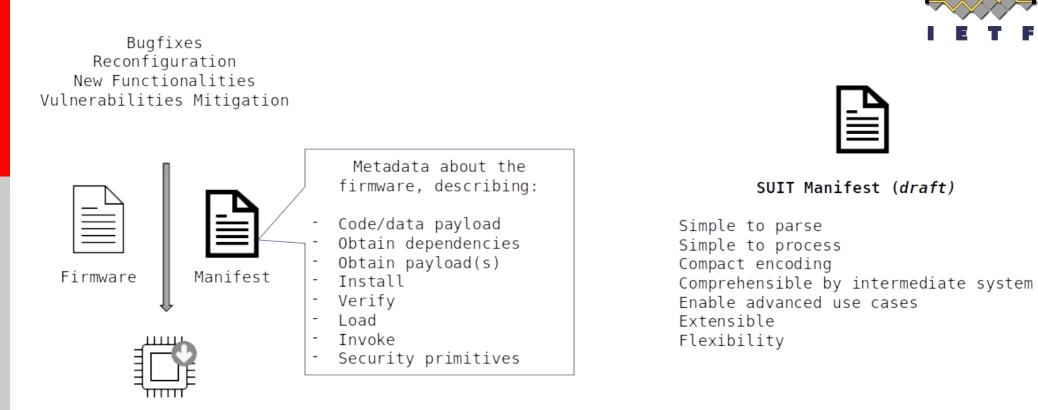

Pain points & Challenges for low-power IoT:

- Securing modular/multiparty software on low-power devices;
- Quantum-resistance adds to an already-tall order...
- Democratizing software updates, over low-power networks.

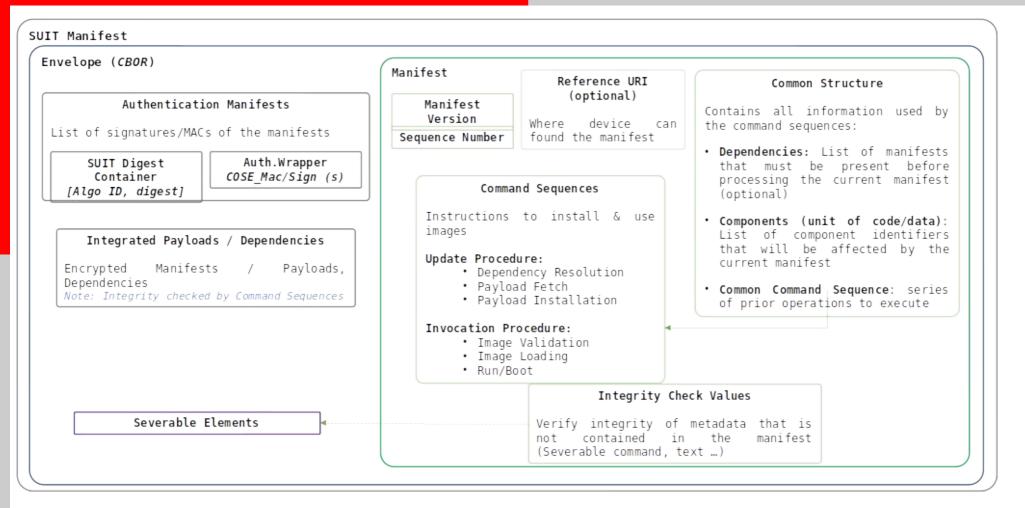
Scenarios?

- Case 1 : monolithic software update, single stakeholder
- Case 2 : modular software updates, single stakeholder
- Case 3 : modular software updates, multiple stakeholders

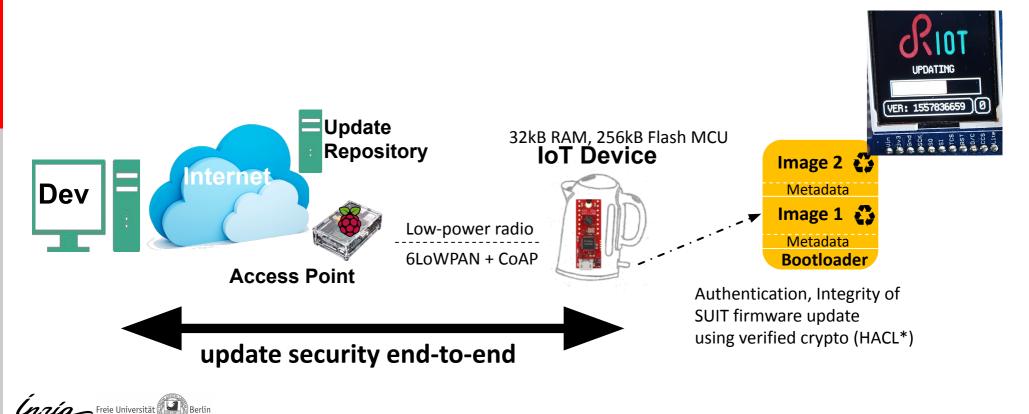



- 1. Context
- 2. Anatomy of Low-Power IoT
- 3. Firmware Update Security for Low-Power IoT
- 4. Function-as-a-Service Primitives for Low-Power IoT

SUIT = new architecture, metadata & serialization for lightweight IoT firmware update security : authentication, integrity checks (and more) specified at IETF, currently in the final stages of standardization: see https://datatracker.ietf.org/wg/suit/about/


• Latest specs for the SUIT manifest see: B. Moran et al., "CBOR-based Serialization Format for the SUIT Manifest," IETF draft draft-ietf-suit-manifest-21, Nov. 2022.

Longer-Term Security for Low-Power IoT Software


SUIT Metadata Structure (Sketch)

Ínría Freie Universität

Source: 2022 slide from Interop / Loïc Dalmasso

- ★ Integration in RIOT, see <u>https://github.com/RIOT-OS/RIOT/tree/master/examples/suit_update</u>
- ★ Support out-of-the-box for ~150 boards (and ~10^5 software configs)

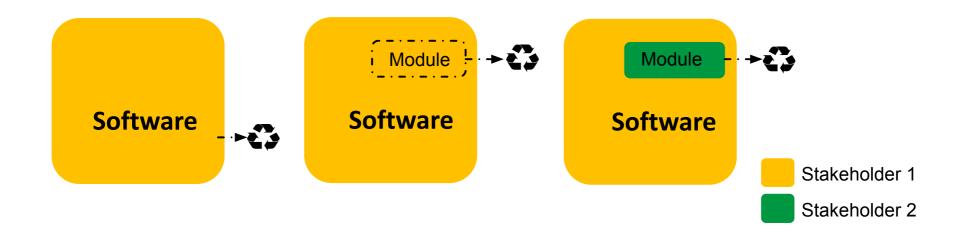
Studies of SUIT performance for pre-quantum [1] and post-quantum [2]

- ★ in [2] evaluation of cost of security level upgrade
 - from pre-quantum 128-bit security (with ed25519 or p-256)
 - to NIST Level 1 post-quantum security (with Falcon, Dilithium or HSS-LMS)

Benchmarks:

- ★ using different 32-bit microcontrollers: ARM Cortex-M, RISC-V, ESP32
- ★ using different families of PQ crypto (lattice- and hash-based)
- ★ software update workflow => focus is *not* signature generation

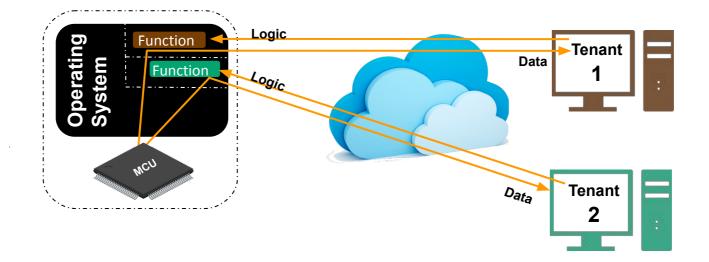
SUIT	Flash	Stack	Transfer	Transfer w. crypto
base w. Ed25519 / SHA256	52.4kB	16.3kB	47kB	53kB
with Falcon / SHA3-256	+120%	+18%	+1.1%	+120%
with LMS / SHA3-256	+34%	+1.2%	+9%	+43%
with Dilithium / SHA3-256	+30%	+210%	+4.3%	+34%


Table 7: Relative cost increase for SUIT with quantum resistance (on ARM Cortex M-4).

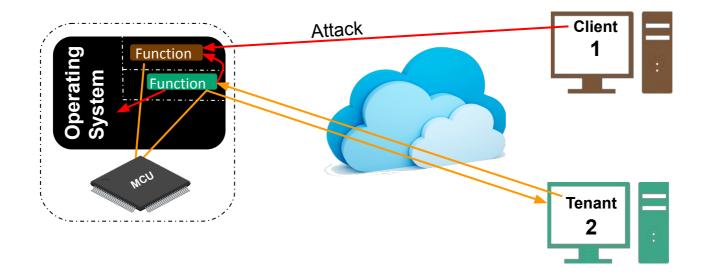
[1] K. Zandberg et al. <u>Secure firmware updates for constrained IoT devices using open standards: A reality check</u>, in IEEE Access, Sept. 2019. [2] G. Banegas et al. <u>Quantum-Resistant Security for Software Updates on Low-power Networked Embedded Devices</u>, in ACNS, June 2022.

Scenarios?

- Case 1 : monolithic software update, single stakeholder
- Case 2 : modular software updates, single stakeholder
- Case 3 : modular software updates, multiple stakeholders



- 1. Context
- 2. Anatomy of Low-Power IoT
- 3. Firmware Update Security for Low-Power IoT
- 4. Function-as-a-Service Primitives for Low-Power IoT


Customize on-the-fly deployed IoT software with additional/modifiable functions:

- Host business logic applications
- Host debug/monitoring snippets
- Host multiple functions, by different tenants

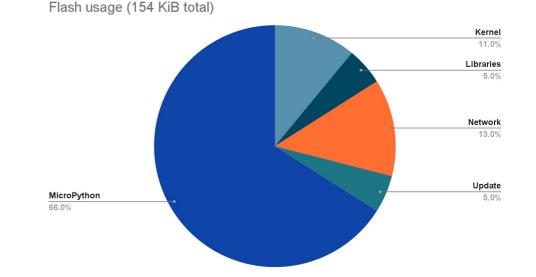
Threat model: we want function fault-isolation, to protect against

- Malicious tenants: Escape the sandbox?
- Malicious clients: Install-time attacks?

Closest related works: **NanoLambda**, FaaS-like embedded engine [1]

Main limitations:

- Flash memory budget explosion
- 1000x slower than native code.


Other engine: WebAssembly (WASM)

- Promises nicer isolation...
- But similar flash budget explosion

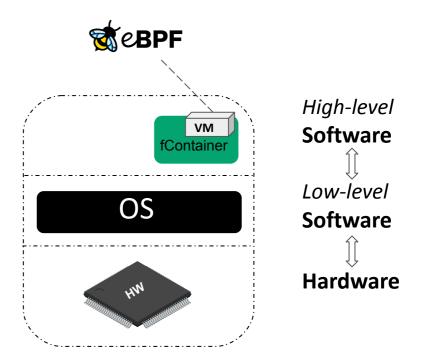
Also: MicroPython

- Performance similar to Nanolambda

Micro-Services on Microcontrollers?

[3]: G. George et al. "<u>NanoLambda: Implementing Functions-as-a-Service at All Resource</u> <u>Scales for the Internet of Things</u>," IEEE/ACM Symposium on Edge Computing , 2020

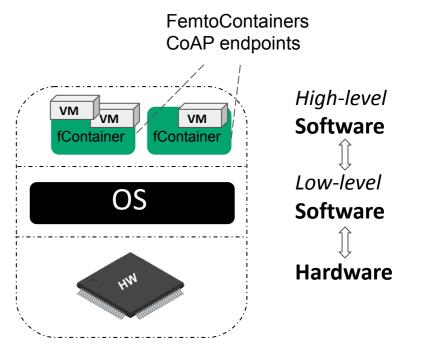
а



FemtoContainers use ultra-lightweight virtualization: rBPF [4], the eBPF VM ported to microcontrollers

- Register-based VM
- Super small memory requirement
- Limited instruction set
- Designed as sandbox

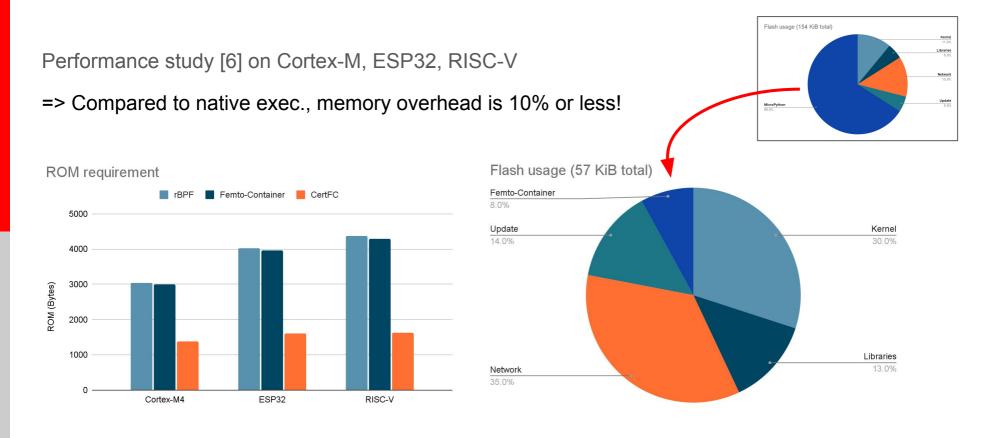
(Allows for usage of existing compiler toolchains, supports C, C++, Rust, any LLVM-compiled language)


[4] K. Zandberg et al. <u>Minimal Virtual Machines on IoT Microcontrollers:</u> <u>The case of Berkeley Packet Filters with rBPF</u>, in PEMWN, Dec. 2020

femto-Container

Femto-Containers: Implementation

- Real-Time OS (RTOS) syscalls
 - Allows & controls sensor interaction, network services
 - Reference implementation in RIOT, available at: <u>https://github.com/future-proof-iot/Femto-Container_tutorials</u>
- Femto-container(s) exposed as CoAP resources
 - Trigger container applications via networked endpoints
- SUIT-compliant software updates
 - OTA updates of containerized microservices over CoAP
- Femto-Container hosting engine = only 1000 LoC (!)
 - allowed formal verification [5] for fault-isolation



femto-Container

[5] S. Yuan et al <u>End-to-end Mechanized Proof of an eBPF</u> <u>Virtual Machine for Microcontrollers</u>, in CAV, Aug. 2022

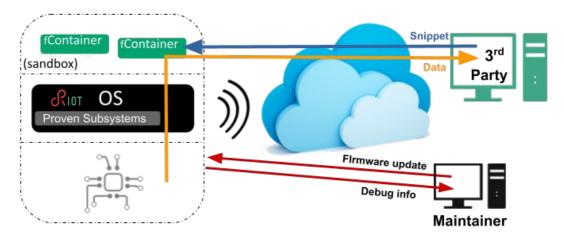
Inia Freie Universität

[6] K. Zandberg et al. <u>Femto-Containers: Lightweight Virtualization and Fault Isolation For Small</u> <u>Software Functions on Low-Power IoT Microcontrollers</u>, in ACM MIDDLEWARE, Nov. 2022 ★ Long-term low-power IoT cybersecurity requires secure software updates

★ SUIT

- is a good standard option for the security of low-power IoT updates
- has open source implementation available
- was shown to as doable even with post-quantum 128-bit security (e.g. on RIOT devices)
- can secure modular update of IoT software other than firmware (e.g. eBPF VMs)
- ★ Femto-Containers and eBPF are an option for DevOps on low-power IoT

Défi Inria **RIOT-fp**


Online: https://future-proof-iot.github.io/RIOT-fp

Objectives

Output

Next-level **cybersecurity for IoT** software on ultra-low power devices.

- 1. **Open ecosystem+platform**, roughly equivalent to the Linux ecosystem;
- 2. **Small+safe OS perimeter**, roughly equivalent to the seL4 kernel;
- 3. **Quantum-resistant** cybersecurity;
- 4. **Modern+secure DevOps**, as "easy as Amazon Lambda" over low-power networks.

Publications: at many academic journals & conferences;

Software: jumpstart/maintenance of 10+ open source repositories (including RIOT);

Standards: several standardization docs at IETF (including one RFC already).

Teams involved: TRiBE, EVA, GRACE, TEA, CELTIQUE, PROSECCO (+ FU Berlin)

nnía

THANKS! QUESTIONS? SHOOT!

Website : <u>https://future-proof-iot.github.io/RIOT-fp/</u> including full publication list at <u>https://future-proof-iot.github.io/RIOT-fp/publications</u>

Code : https://github.com/future-proof-iot including also contribs to the RIOT code base at https://github.com/RIOT-OS/RIOT

nín - Freie Universität

Email : emmanuel.baccelli@inria.fr

RIOT-fp participants include Shenghao Yuan, Gustavo Banegas, Koen Zandberg, Timothy Claeys, Malisa Vucinic, Frederic Besson, JP Talpin, Benjamin Smith, Emmanuel Baccelli, Kaspar Schleiser, Francisco Molina, Alexandre Abadie, Karthik Bhargavan, Denis Merigoux

Longer-Term Security for Low-Power IoT Software

Ínría Freie Universität