
Matthias Zimmermann

Frontend Modernization
for a Banking Application

� Domain Credit/loan/mortage application

� Customer Large Swiss banking group

� Users approx. 8’000 (30 branches)

� App. Age > 10 years

Status

� Yes – contains legacy technology

� But – is vital for the business

� And – needs to run for many more years

«WebKat» Application

1. High maintenance costs

2. UI is legacy technology

What does this mean?

� Just adding a field to the UI takes days

� Dependency to (inhouse) RTK framework based on JSP

� No interest in maintenance/continuation of RTK

� RTK maintenance too expensive

� Desire to move away from JSP

«WebKat» Pain Points

What now?
Modernize!

Two Goals

1. Replace the proprietary RTK UI framework

2. Reduce maintenance costs

Scope / Requirements

� Focus on Frontend

� No (re)training of users allowed

− 1:1 dialog layout

− 1:1 functionality

«WebKat» Modernization Project

JSP (Google Trends)

Going away from JSP is ok …

2005 2015

… but where to go?

Choosing a UI Frameworks
Not an easy Task

Replacement Candidates for JSP

JSF?

James Gosling on JSF

https://www.youtube.com/watch?v=9ei-rbULWoA (http://www.clipconverter.cc/)

Time: ’47:05 – ’47:20 (JSF vs the others: they are all awful” …)

JSF, GWT and Vaadin

… hmm

2009 2015

JavaScript, HTML5?

2012

Adam Biem on HTML5

https://www.youtube.com/watch?v=KDZ7CdtMTfw (http://www.clipconverter.cc/)

‘24:53 – ’26:41 (AdamBiem @ DevDay Dresden, 19.06.2015)

2018 (3 years)

� Is the UI framwork still relevant?

� What about newcomers?

2025 (10 years)

� Ideas? Anyone?

� What now?

Whatever we evaluate …

� No new UI Framework

� RTK framework replaced by Eclipse Scout

Why?

� Scout is independent of UI technology

� Open source benefits

− Actively maintained (by somebody else)

− Professional services available

− Minimal training required

Banks’ Decision

Eclipse Scout

Eclipse Scout

Scout Framework

� Built for Business Applications

� Multi Device support

� UI technology independent

Framework Benefits

� Future proof (enterprise apps live > 10 years)

� Boosts productivity (producing software in Switzerland …)

� Simple to learn (developers become productive in 1-2 weeks)

Core Business Applications

� Formally capture process knowlege of organisation

� This knowlege represents the applications value

� It takes years to build such knowledge

� UI technologies are only a means to an end

� UI technologies get «old» soon

� Replacement/modernisation is expensive

«Business rarely willing to spend money on
something not considered valuable»

Future proof?
Some Fundamentals

Future proof?
Scout Luna/Mars UI

Future proof?
Scout Luna/Mars Code

Future proof?
Scout Neon UI

Future proof?
Scout Neon Code

Future proof?
Protection of Investment

==

Scout Luna Scout Mars

… 1999

… 2005

Eclipse Scout 2011

Eclipse Scout 2015/16

The «WebKat» Project

Manual Transformation

� Manually translate JSP into Scout/Java code

Automatic Transformation

� Write JSP parser

� Write transformer to Scout/Java

Mixed approach

� Automatically transform simple elements

� Manually translate complex parts

«WebKat» Modernization
Different Options

Advantages

� Developers can also handle complex cases

� Managing progress in this setup is «simple»

Issues

� Costly (for simple and repetitive tasks)

� Manual modernization takes time

� Quality of resulting code base

− Inconsistencies

− Bugs

Modernization: Manual Approach

Modernization: Manual Approach

Completion

Required

Level

Project Duration Time

Advantages

� Rapid progress (initially)

� High quality

− Consistent code base

− No bugs

Issues

� Writing a good transfomers is hard (too hard?)

Modernization: Fully Automatic Approach

Modernization: Fully Automatic Approach

Completion

Required

Level

TimeProject Duration

Modernization: Mixed Approach

Completion

Required

Level

Auto TimeManual Migration Benefit

1. Definition of Target Application Stack

2. Automatic Transformations of

− Dialog Layout

− Dialog Controls and Texts

− JSP Logic as Comments in Source Code

3. Manual Completion of generated Sources

− Logic of UI Model

− Mapping with Backend Services

4. Regression Testing to ensure 1:1 Functionality

«WebKat» Mixed Approach

Fully Automatic Transformation

<td>
<label ><%=getString("FLD_V_ZINSSATZABWEICHUNG_GRUND") %></label>
<select property=… >

<optionsCollection codeGroup= CDE_GRP_D2K_1074_ZINS_ABWEICHUNG_BEGR/>
</rctl:select>

</td>

public class ZinssatzAbweichungGrund Field extends AbstractSmartField<Long>{
/**

* jsp: code type = ' CDE_GRP_D2K_1074_ZINS_ABWEICHUNG_BEGR‘
*/

@Override
public TextCodeAbs getConfiguredTextCode (){

return new ZinsAbweichungBegrCodeType ();
}

@Override
public String getConfiguredLabel (){

return TEXTS.get("Grund");
}

}

Semi-Automatic Transformation

<td>
<label ><%=getString("FLD_V_ZINSSTUFE_BEZEICHNUNG") %></label>
<select property=… >

<optionsCollection codeGroup=
"<%= uiFormLimiten.getProdukteLimiten().getZinsstufeGroup() %>" />

</select>
</td>

public class Zinsstufe Field extends AbstractSmartField<Long>{
...
/**

* jsp: <optionsCollection name="WkatDynamicHtmlHelper.DYN_CODE_REQUEST_ID«
* valid="false"/>
*/

public TextCodeAbs getConfiguredTextCode (){
// TODO: code type =
// 'uiFormLimiten.getProdukteLimiten().getZinsstufeGroup()'
return null;

}
...

}

Project Phase Duration (and Efforts)

� Adapting the Transformer

− 2 Months (2 Man Months)

� Automatic Transformation from RTK/JSP to Eclipse Scout

− 1 Hour

� Manual Completion

− 4 Months (13 Man Months) � Total: 15 Man Months

Comparison with Manual Approach

� 19 Man Months (Estimate)

� Savings for Mixed Approach: 4 Man Months (20%)

«WebKat» The Numbers

� Mixed modernization approach worked well

� JSP Technology was well suited for mixed approach

� Close collaboration (on-site) with client was vital

«WebKat» Learnings

� Clean Architecture with Scout Application Model

� Business Code is separated from UI Technology

� JSP Technology removed from Application

� RTK Framework removed

«WebKat» Modernization Benefits

Summary

� Business Applications live for a long time

� UI Technologies

− Become legacy quickly

− Are not considered valuable

− Can trigger costly modernization projects

Modernization
General Observations

Generally

� Select a small initial Scope

� Go to production as quickly as possible

� Remove legacy technologies one-by-one

� Consider an automatic/manual mixed approach

Specifically

� Be independent of a UI technology

� Check out Eclipse Scout for your modernization project ☺

Modernization
Recommendations

Eclipse Scout 2015

Thanks
@EclipseScout

matthias.zimmermann @bsi-software.com

